
Introduction to

PAPI
the

Performance Application Programming Interface

Dan Terpstra, Heike Jagode

terpstra | jagode@eecs.utk.edu

February 16th 2009



What are Hardware Performance Counters?

Hardware performance counters can provide insight into: 
1. Whole program timing

2. Cache behaviors

3. Branch behaviors

4. Memory and resource contention and access patterns

5. Pipeline stalls

6. Floating point efficiency

7. Instructions per cycle

8. Subroutine resolution

9. Process or thread attribution

For many years, hardware engineers have designed in specialized registers to 
measure the performance of various aspects of a microprocessor.

HW performance counters provide application developers with valuable 
information about code sections that can be improved



What’s PAPI?

• Middleware that provides a consistent and efficient programming 
interface for the performance counter hardware found in most major 
microprocessors.

• Started as a Parallel Tools Consortium project in 1998
– Goal was to produce a specification for a portable interface to the hardware 

performance counters.

• Countable events are defined in two ways:
– Platform-neutral Preset Events (e.g., PAPI_TOT_INS)
– Platform-dependent Native Events (e.g., L3_CACHE_MISS)

• Preset Events can be derived from multiple Native Events
(e.g. PAPI_L1_TCM might be the sum of L1 Data Misses and L1 
Instruction Misses on a given platform)



4

PAPI Hardware Events

• Preset Events
– Standard set of over 100 events for application performance tuning
– No standardization of the exact definition
– Mapped to either single or linear combinations of native events on each 

platform
– Use papi_avail to see what preset events are available on a given platform

• Native Events
– Any event countable by the CPU
– Same interface as for preset events
– Use papi_native_avail utility to see all available native events

• Use papi_event_chooser utility to select a compatible set of events



Where’s PAPI ?

• PAPI runs on most modern processors and Operating Systems 
of interest to HPC:
– IBM POWER{4, 5, 5+, 6} / AIX or Linux
– PowerPC{-32, -64, 970} / Linux
– Cell
– Blue Gene / {L, P} 
– Intel Pentium II, III, 4, M, Core, etc. / Linux
– Intel Itanium{1, 2, Montecito, Montvale}
– AMD Athlon, Opteron / Linux
– Cray XT{3, 4} Catamount, CNL
– Altix, Sparc, SiCortex…
– …and even Windows {XP, 2003 Server; PIII, Athlon, Opteron}!
– …but not Mac 

• At the VI-HPS workshop PAPI is available on:
– POWER6 Cluster in Juelich
– BlueGene/P in Juelich
– SGI Altix in Dresden
– Sun Niagara2 cluster (RWTH) in Aachen



3rd Party and GUI Tools

PAPI HARDWARE SPECIFIC
LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level
User API

High Level
User API

PAPI Counter Interfaces

PAPI provides 3 interfaces to the 
underlying counter hardware: 

A Low Level API manages hardware 
events (preset and native) in user 
defined groups called EventSets.
Meant for experienced application 
programmers wanting fine-grained 
measurements.

A High Level API provides the ability to 
start, stop and read the counters for a 
specified list of events (preset only).
Meant for for programmers wanting 
simple event measurements.

1. Graphical and end-user tools provide 
facile data collection and visualization.



PAPI High Level Calls

1. PAPI_num_counters()

♦  get the number of hardware counters available on the system

2. PAPI_flips (float *rtime, float *ptime, long long *flpins, float *mflips)

♦ simplified call to get Mflips/s (floating point instruction rate), real and processor time

3. PAPI_flops  (float *rtime, float *ptime, long long *flpops, float *mflops)

♦ simplified call to get Mflops/s (floating point operation rate), real and processor time

4. PAPI_ipc (float *rtime, float *ptime, long long *ins, float *ipc)

♦ gets instructions per cycle, real and processor time

5. PAPI_accum_counters (long long *values, int array_len)

♦ add current counts to array and reset counters

6. PAPI_read_counters (long long *values, int array_len)

♦ copy current counts to array and reset counters

7. PAPI_start_counters (int *events, int array_len)

♦ start counting hardware events

8. PAPI_stop_counters (long long *values, int array_len)

♦ stop counters and return current counts 



Example: Low Level API

#include "papi.h”
#define NUM_EVENTS 2
int Events[NUM_EVENTS]={PAPI_FP_OPS,PAPI_TOT_CYC},
int EventSet;
long long values[NUM_EVENTS];

/* Initialize the Library */
retval = PAPI_library_init (PAPI_VER_CURRENT);
/* Allocate space for the new eventset and do setup */
retval = PAPI_create_eventset (&EventSet);
/* Add Flops and total cycles to the eventset */
retval = PAPI_add_events (&EventSet,Events,NUM_EVENTS);

/* Start the counters */
retval = PAPI_start (EventSet);

do_work();  /* What we want to monitor*/

/*Stop counters and store results in values */
retval = PAPI_stop (EventSet,values);



Component PAPI (PAPI-C)

• Motivation:
– Hardware counters aren’t just for cpus anymore

• Network counters; thermal & power measurement…
– Often insightful to measure multiple counter domains at once

• Goals:
– Support simultaneous access to on- and off-processor counters
– Isolate hardware dependent code in a separable component 

module
– Extend platform independent code to support multiple 

simultaneous components
– Add or modify API calls to support access to any of several 

components
– Modify build environment for easy selection and configuration of 

multiple available components



PAPI FRAMEWORK

Low Level
User API

High Level
User API

PAPI COMPONENT 
(CPU)

Operating System

Counter Hardware

Component PAPI

Developer APIDeveloper API

PAPI COMPONENT 
(NETWORK)

Operating System

Counter Hardware

PAPI COMPONENT 
(THERMAL)

Operating System

Counter Hardware

Developer API



Some Tools that use PAPI

• TAU (U Oregon) http://www.cs.uoregon.edu/research/tau/

• PerfSuite (NCSA)  http://perfsuite.ncsa.uiuc.edu/

• HPCToolkit (Rice Univ) http://hipersoft.cs.rice.edu/hpctoolkit/

• KOJAK and SCALASCA (FZ Juelich, UTK)  
http://icl.cs.utk.edu/kojak/

• VampirTrace and Vampir (TU Dresden) http://www.vamir.eu

• Open|Speedshop (SGI) http://oss.sgi.com/projects/openspeedshop/

• SvPablo (UNC Renaissance Computing Institute)
http://www.renci.unc.edu/Software/Pablo/pablo.htm

• ompP (UTK) http://www.ompp-tool.com

http://www.cs.uoregon.edu/research/tau/
http://perfsuite.ncsa.uiuc.edu/
http://www.renci.unc.edu/Software/Pablo/pablo.htm


Introduction to

PAPI
the

Performance Application Programming Interface

Dan Terpstra, Heike Jagode

terpstra | jagode@eecs.utk.edu

February 16th 2009


