
Score-P – A Joint Performance

Measurement Run-Time Infrastructure for

Periscope, Scalasca, TAU, and Vampir

Markus Geimer1), Bert Wesarg2)

With contributions from

Andreas Knüpfer2) and Christian Rössel1)

1)FZ Jülich, 2)ZIH TU Dresden

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Fragmentation of tools landscape

• Several performance tools co-exist

• With own measurement systems and output formats

• Complementary features and overlapping functionality

• Redundant effort for development and maintenance

• Limited or expensive interoperability

• Complications for user experience, support, training

Vampir

VampirTrace

OTF

Scalasca

EPILOG /

CUBE

TAU

TAU native

formats

Periscope

Online

measurement

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

SILC Project Idea

• Start a community effort for a common infrastructure

– Score-P instrumentation and measurement system

– Common data formats OTF2 and CUBE4

• Developer perspective:

– Save manpower by sharing development resources

– Invest in new analysis functionality and scalability

– Save efforts for maintenance, testing, porting, support, training

• User perspective:

– Single learning curve

– Single installation, fewer version updates

– Interoperability and data exchange

• SILC project funded by BMBF

• Close collaboration PRIMA project

funded by DOE

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Partners

• Forschungszentrum Jülich, Germany

• German Research School for Simulation Sciences,

Aachen, Germany

• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany

• RWTH Aachen, Germany

• Technische Universität Dresden, Germany

• Technische Universität München, Germany

• University of Oregon, Eugene, USA

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P Functionality

• Provide typical functionality for HPC performance tools

• Support all fundamental concepts of partner‘s tools

• Instrumentation (various methods)

• Flexible measurement without re-compilation:

– Basic and advanced profile generation

– Event trace recording

– Online access to profiling data

• MPI, OpenMP, and hybrid parallelism (and serial)

• Enhanced functionality (OpenMP 3.0, CUDA,

highly scalable I/O)

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Design Goals

• Functional requirements

– Generation of call-path profiles and event traces

– Using direct instrumentation, later also sampling

– Recording time, visits, communication data, hardware counters

– Access and reconfiguration also at runtime

– Support for MPI, OpenMP, basic CUDA, and all combinations

• Later also OpenCL/HMPP/PTHREAD/…

• Non-functional requirements

– Portability: all major HPC platforms

– Scalability: petascale

– Low measurement overhead

– Easy and uniform installation through UNITE framework

– Robustness

– Open Source: New BSD License

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P Architecture

Instrumentation wrapper

Application (MPI×OpenMP×CUDA)

Vampir Scalasca Periscope TAU

Compiler

Compiler

OPARI 2

POMP2

CUDA

CUDA

User

User

PDT

TAU

Score-P measurement infrastructure

Event traces (OTF2)
Call-path profiles
(CUBE4, TAU)

Online interface

Hardware counter (PAPI, rusage)

PMPI

MPI

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Future Features and Management

• Scalability to maximum available CPU core count

• Support for OpenCL, HMPP, PTHREAD

• Support for sampling, binary instrumentation

• Support for new programming models, e.g., PGAS

• Support for new architectures

• Ensure a single official release version at every time

which will always work with the tools

• Allow experimental versions for new features or research

• Commitment to joint long-term cooperation

Score-P hands-on:

NPB-MZ-MPI / BT

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance analysis steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

10

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT instrumentation

• Edit config/make.def to adjust build configuration

– Modify specification of compiler/linker: MPIF77

11

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS

#---

Items in this file may need to be changed for each platform.

#---

...

#---

The Fortran compiler used for MPI programs

#---

#MPIF77 = mpif77

Alternative variants to perform instrumentation

...

MPIF77 = scorep --user mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...

Uncomment the

Score-P compiler

wrapper specification

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT instrumented build

• Return to root directory and clean-up

• Re-build executable using Score-P compiler wrapper

12

% make clean

% make bt-mz CLASS=W NPROCS=4

cd BT-MZ; make CLASS=W NPROCS=4 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c -lm

../sys/setparams bt-mz 4 W

scorep --user mpif77 -c -O3 -fopenmp bt.f

 [...]

cd ../common; scorep --user mpif77 -c -O3 -fopenmp timers.f

scorep --user mpif77 –O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_W.4

make: Leaving directory 'BT-MZ'

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Measurement configuration: scorep-info

• Score-P measurements are configured via

environmental variables:

13

% scorep-info config-vars

SCOREP_ENABLE_PROFILING

 Description: Enable profiling

 [...]

SCOREP_ENABLE_TRACING

 Description: Enable tracing

 [...]

SCOREP_TOTAL_MEMORY

 Description: Total memory in bytes for the measurement system

 [...]

SCOREP_EXPERIMENT_DIRECTORY

 Description: Name of the experiment directory

 [...]

SCOREP_FILTERING_FILE

 Description: A file name which contain the filter rules

 [...]

SCOREP_METRIC_PAPI

 Description: PAPI metric names to measure

 [...]

SCOREP_METRIC_RUSAGE

 Description: Resource usage metric names to measure

 [... More configuration variables ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Summary measurement collection

• Change to the directory containing the new executable

before running it with the desired configuration

14

% cd bin.scorep

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum

% export OMP_NUM_THREADS=4

% mpiexec –np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 4 x 4

 Iterations: 200 dt: 0.000800

 Number of active processes: 4

 Use the default load factors with threads

 Total number of threads: 16 (4.0 threads/process)

 Calculated speedup = 15.78

 Time step 1

 [... More application output ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum

containing

– a record of the measurement configuration (scorep.cfg)

– the analysis report that was collated after measurement

(profile.cubex)

• Interactive exploration with CUBE / ParaProf

BT-MZ summary analysis report examination

15

% ls

bt-mz_W.4 scorep_bt-mz_W_4x4_sum

% ls scorep_bt-mz_W_4x4_sum

profile.cubex scorep.cfg

% cube scorep_bt-mz_W_4x4_sum/profile.cubex

[CUBE GUI showing summary analysis report]

% paraprof scorep_bt-mz_W_4x4_sum/profile.cubex

[TAU ParaProf GUI showing summary analysis report]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Congratulations!?

• If you made it this far, you successfully used Score-P to

– instrument the application

– analyze its execution with a summary measurement, and

– examine it with one the interactive analysis report explorer GUIs

• ... revealing the call-path profile annotated with

– the “Time” metric

– Visit counts

– MPI message statistics (bytes sent/received)

• ... but how good was the measurement?

– The measured execution produced the desired valid result

– however, the execution took rather longer than expected!

• even when ignoring measurement start-up/completion, therefore

• it was probably dilated by instrumentation/measurement overhead

16

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis result scoring

• Report scoring as textual output

• Region/callpath classification

– MPI (pure MPI library functions)

– OMP (pure OpenMP functions/regions)

– USR (user-level source local computation)

– COM (“combined” USR + OpenMP/MPI)

– ANY/ALL (aggregate of all region types)

17

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex

Estimated aggregate size of event trace (total_tbc): 990247448 bytes

Estimated requirements for largest trace buffer (max_tbc): 256229936 bytes

(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes

 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region

 ALL 256229936 5549.78 100.0 ALL

 USR 253654608 1758.27 31.7 USR

 OMP 5853120 3508.57 63.2 OMP

 COM 343344 183.09 3.3 COM

 MPI 93776 99.86 1.8 MPI

USR

USR

COM

COM USR

OMP MPI

1GB of memory in

total, 256 MB per

rank!

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis report breakdown

• Score report breakdown by region

18

% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex

 [...]

flt type max_tbc time % region

 ALL 256229936 5549.78 100.0 ALL

 USR 253654608 1758.27 31.7 USR

 OMP 5853120 3508.57 63.2 OMP

 COM 343344 183.09 3.3 COM

 MPI 93776 99.86 1.8 MPI

 USR 79176312 559.15 31.8 binvcrhs_

 USR 79176312 532.73 30.3 matvec_sub_

 USR 79176312 532.18 30.3 matmul_sub_

 USR 7361424 50.51 2.9 binvrhs_

 USR 7361424 56.35 3.2 lhsinit_

 USR 3206688 27.32 1.6 exact_solution_

 OMP 1550400 1752.20 99.7 !$omp implicit barrier

 OMP 257280 0.44 0.0 !$omp parallel @exch_qbc.f

 OMP 257280 0.61 0.0 !$omp parallel @exch_qbc.f

 OMP 257280 0.48 0.0 !$omp parallel @exch_qbc.f

 [...]

USR

USR

COM

COM USR

OMP MPI

More than

250MB just for

these 6 regions

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis score

• Summary measurement analysis score reveals

– Total size of event trace would be ~990MB

– Maximum trace buffer size would be ~256MB per rank

• smaller buffer would require flushes to disk during measurement

resulting in substantial perturbation

– 98.9% of the trace requirements are for USR regions

• purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions

– These USR regions contribute around 32% of total time

• however, much of that is very likely to be measurement overhead

for frequently-executed small routines (and due to oversubscription)

• Advisable to tune measurement configuration

– Specify an adequate trace buffer size

– Specify a filter file listing (USR) regions not to be measured

19

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis report filtering

• Report scoring with prospective filter listing

6 USR regions

20

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

% scorep-score -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum
Estimated aggregate size of event trace (total_tbc): 20210360 bytes

Estimated requirements for largest trace buffer (max_tbc): 6290888 bytes

(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes

 or reduce requirements using file listing names of USR regions to be filtered.)

20MB of memory

in total, 6 MB per

rank!

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis report filtering

• Score report breakdown by region

21

% scorep-score -r –f ../config/scorep.filt \

> scorep_bt-mz_W_4x4_sum/profile.cubex

flt type max_tbc time % region

 + FLT 253653936 1758.26 31.7 FLT

 * ALL 6290888 3791.53 68.3 ALL-FLT

 - OMP 5853120 3508.57 63.2 OMP-FLT

 * COM 343344 183.09 3.3 COM-FLT

 - MPI 93776 99.86 1.8 MPI-FLT

 * USR 672 0.01 0.0 USR-FLT

 + USR 79176312 559.15 31.8 binvcrhs_

 + USR 79176312 532.73 30.3 matvec_sub_

 + USR 79176312 532.18 30.3 matmul_sub_

 + USR 7361424 50.51 2.9 binvrhs_

 + USR 7361424 56.35 3.2 lhsinit_

 + USR 3206688 27.32 1.6 exact_solution_

 - OMP 1550400 1752.20 99.7 !$omp implicit barrier

 - OMP 257280 0.44 0.0 !$omp parallel @exch_qbc.f

 - OMP 257280 0.61 0.0 !$omp parallel @exch_qbc.f

 - OMP 257280 0.48 0.0 !$omp parallel @exch_qbc.f

 [...]

Filtered
routines
marked
with ‘+’

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ filtered summary measurement

• Set new experiment directory and re-run measurement

with new filter configuration

22

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum_with_filter

% export SCOREP_FILTERING_FILE=../config/scorep.filt

% mpiexec –np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 4 x 4

 Iterations: 200 dt: 0.000800

 Number of active processes: 4

 Use the default load factors with threads

 Total number of threads: 16 (4.0 threads/process)

 Calculated speedup = 15.78

 Time step 1

 [... More application output ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ tuned summary analysis report score

• Scoring of new analysis report as textual output

• Significant reduction in runtime (measurement overhead)
– Not only reduced time for USR regions, but MPI/OMP reduced

too!

• Further measurement tuning (filtering) may be
appropriate
– e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

23

% scorep-score scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex

Estimated aggregate size of event trace (total_tbc): 20210360 bytes

Estimated requirements for largest trace buffer (max_tbc): 6290888 bytes

(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes

 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region

 ALL 6290888 241.77 100.0 ALL

 OMP 5853120 168.94 69.9 OMP

 COM 343344 35.57 14.7 COM

 MPI 93776 37.25 15.4 MPI

 USR 672 0.01 0.0 USR

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace measurement collection...

• Re-run the application using the tracing mode of Score-P

• Separate trace file per thread written straight into new

experiment directory ./scorep_bt-mz_W_4x4_trace

• Interactive trace exploration with Vampir

24

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace

% export SCOREP_ENABLE_TRACING=true

% export SCOREP_ENABLE_PROFILING=false

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

% vampir scorep_bt-mz_W_4x4_trace/traces.otf2

[Vampir GUI showing trace]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Warnings and tips regarding tracing

• Traces can become extremely large and unwieldy

– Size is proportional to number of processes/threads (width),

duration (length) and detail (depth) of measurement

• Traces containing intermediate flushes are of little value

– Uncoordinated flushes result in cascades of distortion

– Reduce size of trace such that it fits in available buffer space

• Traces should be written to a parallel file system

– /work or /scratch are typically provided for this purpose

• Moving large traces between file systems is often

impractical

– However, systems with more memory can analyze larger traces

– Alternatively, run trace analyzers with undersubscribed nodes

25

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Advanced measurement configuration: metrics

• Recording hardware counters via PAPI

• Also possible to record them only per rank

• Recording operating system resource usage

26

% export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_DCM

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss,ru_stime

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Advanced measurement configuration: MPI

• Record only for subset of the MPI functions events

• All possible sub-groups
– cg Communicator and group management

– coll Collective functions

– env Environmental management

– err MPI Error handling

– ext External interface functions

– io MPI file I/O

– misc Miscellaneous

– perf PControl

– p2p Peer-to-peer communication

– rma One sided communication

– spawn Process management

– topo Topology

– type MPI datatype functions

– xnonblock Extended non-blocking events

– xreqtest Test events for uncompleted requests

27

% export SCOREP_MPI_ENABLE_GROUPS=cg,coll,p2p,xnonblock

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Advanced measurement configuration: CUDA

• Record CUDA events with the CUPTI interface

• All possible recording types

– runtime CUDA runtime API

– driver CUDA driver API

– gpu GPU activities

– kernel CUDA kernels

– idle GPU compute idle time

– memcpy CUDA memory copies (not available yet)

28

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

% mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P user instrumentation API

• Can be used to mark initialization, solver & other phases

– Annotation macros ignored by default

– Enabled with [--user] flag

• Appear as additional regions in analyses

– Distinguishes performance of important phase from rest

• Can be of various type

– E.g., function, loop, phase

– See user manual for details

• Available for Fortran / C / C++

29

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P user instrumentation API (Fortran)

• Requires processing by the C preprocessor

30

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P user instrumentation API (C/C++)

31

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P user instrumentation API (C++)

32

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>", SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P measurement control API

• Can be used to temporarily disable measurement for

certain intervals

– Annotation macros ignored by default

– Enabled with [--user] flag

33

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

Score-P

– Community instrumentation & measurement infrastructure

• Instrumentation (various methods)

• Basic and advanced profile generation

• Event trace recording

• Online access to profiling data

– Available under New BSD open-source license

– Documentation & Sources:

• http://www.score-p.org

– User guide also part of installation:

• <prefix>/share/doc/scorep/{pdf,html}/

– Contact: info@score-p.org

– Bugs: scorep-bugs@groups.tu-dresden.de

34

