Virtual Institute — High Productivity Supercomputing

Introduction to Performance Engineering

Michael Gerndt
Technische Universitat Minchen

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

Barcelona
((Sapercamouting — T|_|T| TECHNISCHE T . universiTE DE SR
German Research School s UNIVERSITAT : Universitat Stuttgart
oo s MONCHEN : g VE RSAILLES S

L| Lawrence Livermore @ TECHNISCHE e JNIVERSITYof
J JU LA National Laboratory S pacDy TENN ESSEE ur

Performance Analysis and Tuning Is
Essential

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance factors of parallel applications

= "Sequential” factors

= Computation
% Choose right algorithm, use optimizing compiler

= Cache and memory
% Tough! Only limited tool support, hope compiler gets it right

= Input/ output
& Often not given enough attention

= "Parallel” factors
= Partitioning / decomposition
= Communication (i.e., message passing)
= Multithreading

= Synchronization / locking
& More or less understood, good tool support

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Tuning basics

= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking !l
= Measurement is better than guessing
= T0 determine performance bottlenecks
= T0 compare alternatives

= T0 validate tuning decisions and optimizations
& After each step!

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

The 80/20 rule

= Programs typically spend 80% of their time in 20% of
the code

= Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
% Know when to stop!

= Don't optimize what does not matter
& Make the common case fast!

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Performance Analysis Process

Production

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metrics of performance

= What can be measured?

= A count of how often an event occurs
= E.g., the number of MPI point-to-point messages sent

= The duration of some interval
= E.g., the time spent these send calls

= The size of some parameter
= E.g., the number of bytes transmitted by these calls

s Derived metrics
= E.g., rates/ throughput
= Needed for normalization

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Example metrics

s EXxecution time
= Number of function calls

s CPI
= CPU cycles per instruction

x FLOPS
= Floating-point operations exec.:uted per second

‘e
“math” Operations?
HW Operations?

HW Instructions?
32-/64-bit? ...

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

Inclusive vs. Exclusive values

= Inclusive
= Information of all sub-elements aggregated into single value

s EXxclusive
s Information cannot be subdivided further

int foo ()

- (
int a;

f{ a =1+ 1;

Inclusive < Exclusive | < bar();

a =a + 1;
\
{ return a;

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

Performance Measurement Techniques

« Event model of the execution
— Events occur at a processor at a specific point in time

— Events belong to event types
 clock cycles
« cache misses
* remote references
 start of a send operation

* Profiling: Recording accumulated performance data for
events
— Sampling: Statistical approach
— Instrumentation: Precise measurement

« Tracing: Recording performance data of individual
events

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sampling

CPU

Program Main

end Main
Function Asterix (...)

end Asterix
Function Obelix (...)

end Obelix

'| program counter

| cycle counter

| cache miss counter

| flop counter

Function Table

Main

Asterix

Obelix

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

interrupt every
10 ms

add and reset
counter

Instrumentation and Monitoring

CPU

|_—

| cache miss counter

Function Table

Asterix

| w0+ [o0] -[a0]

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation Techniques

« Source code instrumentation
— done by the compiler, source-to-source tool, or manually
+ portability
+ link back to source code easy
* re-compile necessary when instrumentation is changed
« difficult to instrument mixed-code applications
« cannot instrument system or 3rd party libraries or executables

* Object code instrumentation

— ,patching” the executable to insert hooks (like a debugger)
* Inverse pros/cons

— Offline
— Online

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tracing

Function Obelix (...)

call monitor(“Obelix“, “enter®) Pro Trace PO I\
call monitor(“Obelix", “exit") Obelix |enter |
£ OIS MPI_Send |[enter }
Pro MPI_Send | exit /
V/
| |
) -1
MPI Library

Function MPI_send (...)
call monitor(“MPI_send®, “enter”

call PMPI_send(...)

N call monitor(“MPI_send®,“exit")
end Obelix (Process n-1

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Merging

Trace PO PO _ Pn-l
| 10.4 | PO |Obelix enter
u 10.5 |P1 | Obelix enter
< \ 10.6 |PO [MPI_Send |enter

10.7 |P1 | MPI_Recv |enter

| L
Merge Process | =—>)
® 9 10.8 | PO |MPI_Send | exit
“ / 11.0 |P1 [MPI_Recv |exit
TrP n-1 :
o
~

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Visualization of Dynamic Behaviour

Po-Pha
10.4 | PO | Obelix enter
10.5 [P1 | Obelix enter
10.6 |PO [MPI_Send |enter
10.7 |P1 | MPI_Recv |ente
10.8 | PO [MPI_Send |exit
11.0 |P1 | MPI_Recv |exit

@

@

®

Obelix

PO [l obelix

P1 I obeiix

Obeli

10.4 10.5 10.6 10.7 10.8 10.9 11.0

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Profiling vs Tracing

* Profiling

recording summary information (time, #calls,#misses...)
about program entities (functions, objects, basic blocks)
very good for quick, low cost overview

points out potential bottlenecks

Implemented through sampling or instrumentation
moderate amount of performance data

« Tracing

recording information about events

trace record typically consists of timestamp, processid, ...
output is a trace file with trace records sorted by time
can be used to reconstruct the dynamic behavior

creates huge amounts of data

needs selective instrumentation

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with MPI

« Single node performance
— Excessive number of 3"d-level cache misses
— Low number of issued instructions
 |O
— High data volume
— Sequential IO due to IO subsystem or sequentialization in the
program
e EXxcessive communication
— Frequent communication
— High data volume

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with MPI

* Frequent synchronization
— Reduction operations
— Barrier operations

« Load balancing
— Wrong data decomposition
— Dynamically changing load

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with SM

« Single node performance

10

Excessive communication

— Large number of remote memory accesses
— False sharing

— False data mapping

Freguent synchronization

— Implicit synchronization of parallel constructs
— Barriers, locks, ...

Load balancing

— Uneven scheduling of parallel loops
— Uneven work in Qlarallel sections

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis Techniques

« Offline vs Online Analysis
— Offline: first generate data then analyse
— Online: generate and analyze data while application is running
— Online requires automation=>»limited to standard bottlenecks
— Offline suffers more from size of measurement information

« Three techniques to support user in analysis
— Source-level presentation of performance data
— Graphical visualization
— Ranking of high-level performance properties

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

No single solution is sufficient!

< A combination of different methods, tools and techniques is
typically needed!

= Analysis
= Statistics, visualization, automatic analysis, data mining, ...

= Measurement
= Sampling / instrumentation, profiling / tracing, ...

= Instrumentation
= Source code / binary, manual / automatic, ...

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 22

Typical performance analysis procedure

= Do | have a performance problem at all?
= Time / speedup / scalability measurements

= What is the key bottleneck (computation / communication)?
= MPI/ OpenMP / flat profiling

= Where is the key bottleneck?
= Call-path profiling, detailed basic block profiling
= Why is it there?

= Hardware counter analysis, trace selected parts to keep trace size
manageable

= Does the code have scalability problems?

= Load imbalance analysis, compare profiles at various sizes
function-by-function

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering 23

