
Introduction to Performance Engineering

Michael Gerndt
Technische Universität München

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis and Tuning is

Essential

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance factors of parallel applications

■ “Sequential” factors

■ Computation

Choose right algorithm, use optimizing compiler

■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right

■ Input / output

Often not given enough attention

■ “Parallel” factors

■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking

More or less understood, good tool support

3

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tuning basics

■ Successful engineering is a combination of

■ The right algorithms and libraries

■ Compiler flags and directives

■ Thinking !!!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

After each step!

4

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of

the code

■ Programmers typically spend 20% of their effort to get

80% of the total speedup possible for the application

Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

5

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Process

Measurement

Analysis

Ranking

Refinement

Coding

Performance Analysis

Production

Program Tuning

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metrics of performance

■ What can be measured?

■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval

■ E.g., the time spent these send calls

■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics

■ E.g., rates / throughput

■ Needed for normalization

7

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example metrics

■ Execution time

■ Number of function calls

■ CPI

■ CPU cycles per instruction

■ FLOPS

■ Floating-point operations executed per second

8

“math” Operations?

 HW Operations?

 HW Instructions?

 32-/64-bit? …

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive

■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

9

int foo()

{

 int a;

 a = 1 + 1;

 bar();

 a = a + 1;

 return a;

}

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Measurement Techniques

• Event model of the execution

– Events occur at a processor at a specific point in time

– Events belong to event types

• clock cycles

• cache misses

• remote references

• start of a send operation

• ...

• Profiling: Recording accumulated performance data for

events

– Sampling: Statistical approach

– Instrumentation: Precise measurement

• Tracing: Recording performance data of individual

events

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sampling

Program Main

...

end Main

Function Asterix (...)

...

end Asterix

Function Obelix (...)

...

end Obelix

...

CPU

program counter

cycle counter

cache miss counter

flop counter

Main

Asterix

Obelix +

Function Table
interrupt every

10 ms

add and reset

counter

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

...

Function Obelix (...)

 call monitor(“Obelix“, “enter“)

...

 call monitor(“Obelix“,“exit“)

end Obelix

...

CPU

monitor(routine, location)

 if (“enter“) then

 else

 end if Function Table

Instrumentation and Monitoring

cache miss counter

Main

Asterix

Obelix + - 10 200 1300 1490

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation Techniques

• Source code instrumentation

– done by the compiler, source-to-source tool, or manually

+ portability

+ link back to source code easy

• re-compile necessary when instrumentation is changed

• difficult to instrument mixed-code applications

• cannot instrument system or 3rd party libraries or executables

• Object code instrumentation

– „patching“ the executable to insert hooks (like a debugger)

• inverse pros/cons

– Offline

– Online

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tr P n-1

Trace P1

Tracing

...

Function Obelix (...)

 call monitor(“Obelix“, “enter“)

...

 call monitor(“Obelix“,“exit“)

end Obelix

...

MPI Library
Function MPI_send (...)

 call monitor(“MPI_send“, “enter“)

 ...

 call PMPI_send(...)

 call monitor(“MPI_send“,“exit“)

end Obelix

...

Process 0

Process 1

Process n-1

Trace P0

10.4 P0 Obelix enter

10.6 P0 MPI_Send enter

10.8 P0 MPI_Send exit

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tr P n-1

Trace P1

Merging

Trace P0

Merge Process

P0 - Pn-1

10.4 P0 Obelix enter

10.5 P1 Obelix enter

10.6 P0 MPI_Send enter

10.7 P1 MPI_Recv enter

10.8 P0 MPI_Send exit

11.0 P1 MPI_Recv exit

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Visualization of Dynamic Behaviour

P0 - Pn-1

10.4 P0 Obelix enter

10.5 P1 Obelix enter

10.6 P0 MPI_Send enter

10.7 P1 MPI_Recv enter

10.8 P0 MPI_Send exit

11.0 P1 MPI_Recv exit

P0

P1

10.4 10.5 10.6 10.7 10.8 10.9 11.0

Timeline Visualization

Obelix

Obelix MPI_Recv

MPI_Send Obelix

Obeli

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Profiling vs Tracing

• Profiling

– recording summary information (time, #calls,#misses...)

– about program entities (functions, objects, basic blocks)

– very good for quick, low cost overview

– points out potential bottlenecks

– implemented through sampling or instrumentation

– moderate amount of performance data

• Tracing

– recording information about events

– trace record typically consists of timestamp, processid, ...

– output is a trace file with trace records sorted by time

– can be used to reconstruct the dynamic behavior

– creates huge amounts of data

– needs selective instrumentation

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with MPI

• Single node performance

– Excessive number of 3rd-level cache misses

– Low number of issued instructions

• IO

– High data volume

– Sequential IO due to IO subsystem or sequentialization in the

program

• Excessive communication

– Frequent communication

– High data volume

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with MPI

• Frequent synchronization

– Reduction operations

– Barrier operations

• Load balancing

– Wrong data decomposition

– Dynamically changing load

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Common Performance Problems with SM

• Single node performance

– ...

• IO

– ...

• Excessive communication

– Large number of remote memory accesses

– False sharing

– False data mapping

• Frequent synchronization

– Implicit synchronization of parallel constructs

– Barriers, locks, ...

• Load balancing

– Uneven scheduling of parallel loops

– Uneven work in parallel sections

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis Techniques

• Offline vs Online Analysis

– Offline: first generate data then analyse

– Online: generate and analyze data while application is running

– Online requires automationlimited to standard bottlenecks

– Offline suffers more from size of measurement information

• Three techniques to support user in analysis

– Source-level presentation of performance data

– Graphical visualization

– Ranking of high-level performance properties

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

No single solution is sufficient!

22

A combination of different methods, tools and techniques is

typically needed!

■ Analysis

■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement

■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation

■ Source code / binary, manual / automatic, ...

EuroMPI‘12: Hands-on Practical Hybrid Parallel Application Performance Engineering

Typical performance analysis procedure

■ Do I have a performance problem at all?

■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?

■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?

■ Call-path profiling, detailed basic block profiling

■ Why is it there?

■ Hardware counter analysis, trace selected parts to keep trace size

manageable

■ Does the code have scalability problems?

■ Load imbalance analysis, compare profiles at various sizes

function-by-function

23

