

☑ PAPI_L1_DCM
☑ PAPI_L1_ICM
☐ PAPI_L2_DCM
☑ PAPI_L2_ICM
Ⅲ PAPI_L1_TGM

Hands-on Practical Hybrid Parallel Application Performance Engineering

EuroMPI Conference, Vienna, Austria, September 23, 2012

Markus Geimer

Jülich Supercomputing Centre m.geimer@fz-juelich.de

Michael Gerndt

Technical University of Munich gerndt@in.tum.de

Sameer Shende

University of Oregon sameer@cs.uoregon.edu

Bert Wesarg

Technical University of Dresden bert.wesarg@tu-dresden.de

Brian Wylie

Jülich Supercomputing Centre b.wylie@fz-juelich.de

Tutorial Agenda

Time	Topic	Speaker
9:00 – 9:15	Introduction to VI-HPS	Geimer
9:15 – 9:45	Introduction to performance engineering	Gerndt
9:45 - 10:00	VI-HPS Live-DVD	all
10:00 – 10:30	Break	
10:30 – 11:00	Profile examination with CUBE	Geimer
11:00 – 11:30	Profile examination with TAU ParaProf	Shende
11:30 – 11:45	Profile data mining with TAU PerfExplorer	Shende
11:45 – 12:30	Interactive trace analysis with Vampir	Wesarg
12:30 – 14:00	Lunch	
14:00 – 15:00	Instrumentation & measurement with Score-P	Wesarg / Geimer
15:00 – 15:30	Automatic trace analysis with Scalasca	Geimer
15:30 – 16:00	Break	
16:00 – 16:45	Online analysis with Periscope	Gerndt
16:45 – 17:00	Wrap-up & discussion	all

Introduction to VI-HPS

Markus Geimer

Jülich Supercomputing Centre

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems

Start-up funding (2006–2011) by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Training workshops
 - Service
 - Support email lists
 - Application engagement
 - Academic workshops

http://www.vi-hps.org

VI-HPS partners (founders)

Forschungszentrum Jülich

Jülich Supercomputing Centre

RWTH Aachen University

Centre for Computing & Communication

Technical University of Dresden

Centre for Information Services & HPC

University of Tennessee (Knoxville)

Innovative Computing Laboratory

VI-HPS partners (cont.)

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

German Research School

Laboratory of Parallel Programming
 Lawrence Livermore National Lab.

Centre for Applied Scientific Computing

Technical University of Munich

Chair for Computer Architecture

University of Oregon

Performance Research Laboratory

University of Stuttgart

■ HPC Centre

University of Versailles St-Quentin

LRC ITACA

Productivity tools

Marmot/MUST

MPI correctness checking

PAPI

Interfacing to hardware performance counters

Periscope

Automatic analysis via an on-line distributed search

Scalasca

Large-scale parallel performance analysis

TAU

Integrated parallel performance system

Vampir/VampirTrace

Event tracing and graphical trace visualization & analysis

Score-P

Common instrumentation & measurement infrastructure

Productivity tools

KCachegrind

Callgraph-based cache analysis [x86 only]

MAQAO

Assembly instrumentation & optimization [x86 only]

mpiP/mpiPview

MPI profiling tool and analysis viewer

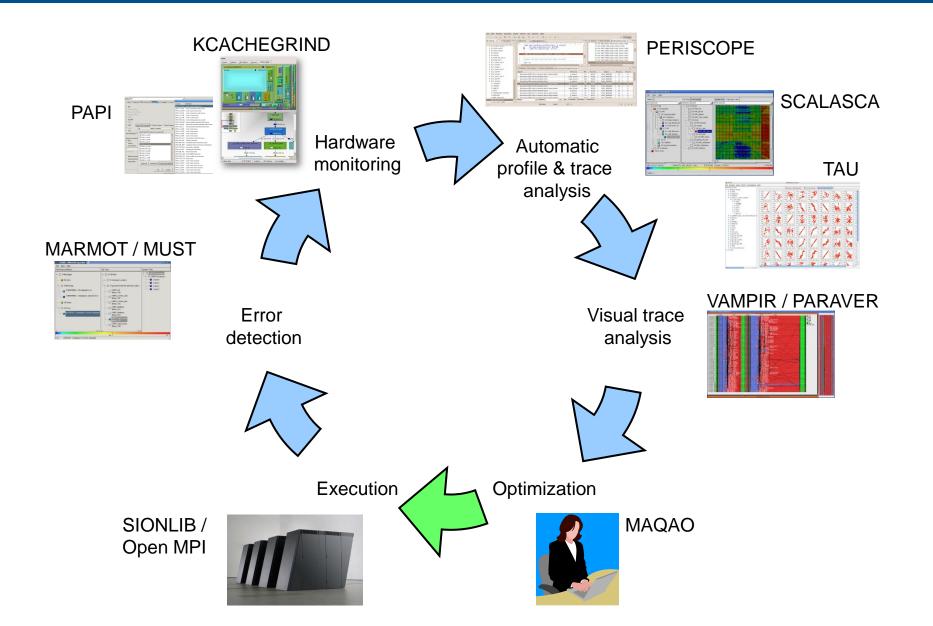
ompP

OpenMP profiling tool

Open MPI

Integrated memory checking

Open|Speedshop


Integrated parallel performance analysis environment

Paraver/Extrae

■ Event tracing and graphical trace visualization & analysis

Technologies and their integration

Tools will *not* automatically make you, your applications or computer systems more *productive*.

However, they can help you understand how your parallel code executes and when / where it's necessary to work on correctness and performance issues.

VI-HPS training & Tuning Workshops

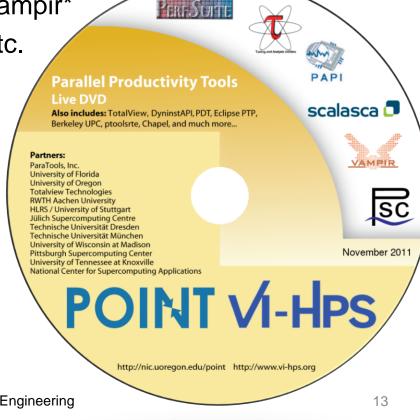
Goals

- Give an overview of the programming tools suite
- Explain the functionality of individual tools
- Teach how to use the tools effectively
- Offer hands-on experience and expert assistance using tools
- Receive feedback from users to guide future development
- For best results, bring & analyze/tune your own code(s)!
- VI-HPS Tutorial series
 - SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11, EuroMPI'12
- VI-HPS Tuning Workshop series
 - 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
 2010 (Garching & Amsterdam), 2011 (Stuttgart & Aachen),
 2012 (St-Quentin), 2012/10/16–19 (Garching)

Upcoming events

- 10th VI-HPS Tuning Workshop (16-19 Oct 2012)
 - Hosted by LRZ, Garching-bei-München, Germany
 - Using PRACE Tier-0 SuperMUC iDataPlex system
 - Scalasca, Vampir, TAU, Periscope, KCachegrind, MAQAO, ...
- Further events to be determined
 - (one-day) tutorials
 - With guided exercises usually using a Live-DVD
 - (multi-day) training workshops
 - With your own applications on real HPC systems
- Check <u>www.vi-hps.org/training</u> for announced events
- Contact us if you might be interested in hosting an event

VI-HPS Linux Live DVD/ISO



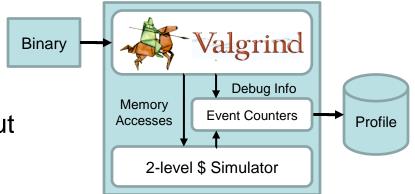
- Bootable Linux installation on DVD (or USB memory stick)
- Includes everything needed to try out our parallel tools on an 64-bit x86-architecture notebook computer

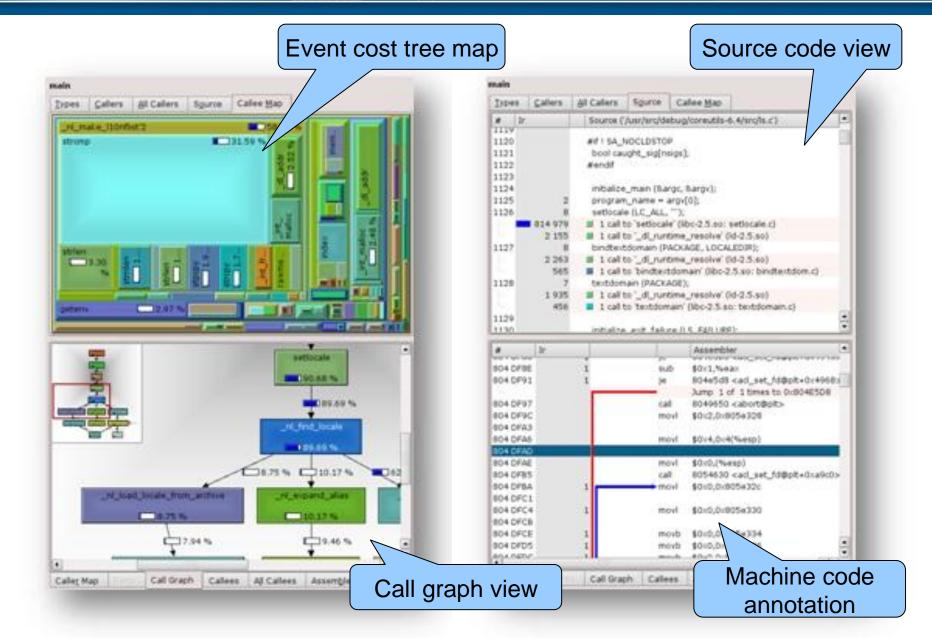
 VI-HPS tools: KCachegrind, Marmot, PAPI, Periscope, Scalasca, TAU, VT/Vampir*

Also: Eclipse/PTP, TotalView*, etc.

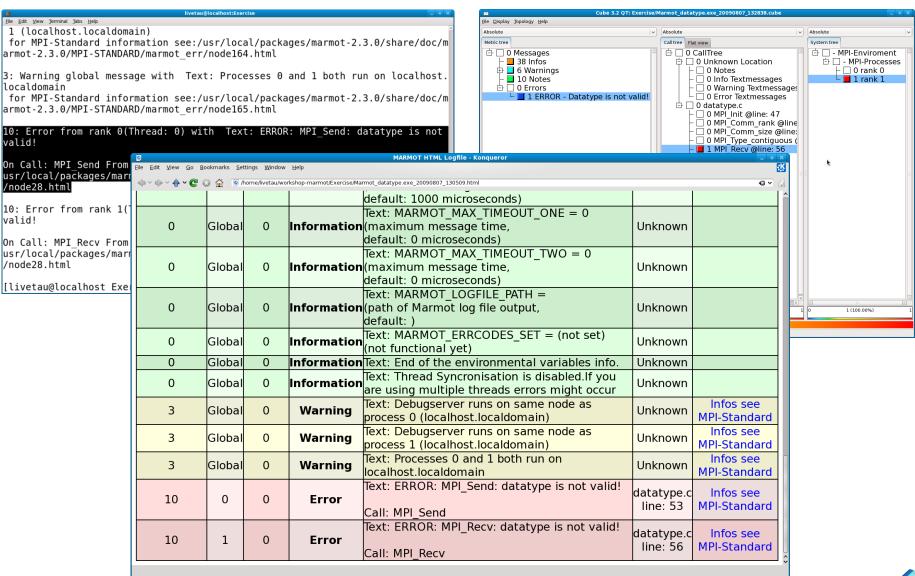
- * time/capability-limited evaluation licences provided for commercial products
- GCC (w/ OpenMP), OpenMPI
- Manuals/User Guides
- Tutorial exercises & examples
- Produced by U. Oregon PRL
 - Sameer Shende

VI-HPS productivity tools suite



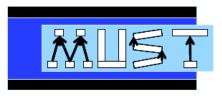


- Cachegrind: cache analysis by simple cache simulation
 - Captures dynamic callgraph
 - Based on valgrind dynamic binary instrumentation
 - Runs on x86/PowerPC/ARM unmodified binaries
 - No root access required
 - ASCII reports produced
- [KQ]Cachegrind GUI
 - Visualization of cachegrind output
- Developed by TU Munich
 - Released as GPL open-source
 - http://kcachegrind.sf.net/



- Tool to check for correct MPI usage at runtime
 - Checks conformance to MPI standard
 - Supports Fortran & C bindings of MPI-1.2
 - Checks parameters passed to MPI
 - Monitors MPI resource usage
- Implementation
 - C++ library gets linked to the application
 - Does not require source code modifications
 - Additional process used as DebugServer
 - Results written in a log file (ASCII/HTML/CUBE)
- Developed by HLRS & TU Dresden
 - Released as open-source
 - http://www.hlrs.de/organization/av/amt/projects/marmot

Marmot logfiles



- Next generation MPI runtime error detection tool
 - Successor of the Marmot and Umpire tools
 - Initial merge of Marmot's many local checks with Umpire's nonlocal checks
 - Improved scalability expected in future
 - Exploits CMake, GTI & PnMPI infrastructure

- Developed by TU Dresden, LLNL & LANL
 - BSD license open-source initial release in November 2011
 - http://tu-dresden.de/zih/must/

- Portable performance counter library & utilities
 - Configures and accesses hardware/system counters
 - Predefined events derived from available native counters
 - Core component for CPU/processor counters
 - instructions, floating point operations, branches predicted/taken, cache accesses/misses, TLB misses, cycles, stall cycles, ...
 - performs transparent multiplexing when required
 - Extensible components for off-processor counters
 - InfiniBand network, Lustre filesystem, system hardware health, ...
 - Used by multi-platform performance measurement tools
 - Periscope, Scalasca, TAU, VampirTrace, ...
- Developed by UTK-ICL
 - Available as open-source for most modern processors http://icl.cs.utk.edu/papi/

PAPI preset counters (and their definitions)

- juropa\$ papi_avail
- Available events and hardware information.

PAPI Version : 4.1.0.0

Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU

X5570 @ 2.93GHz (26)

CPU Revision : 5.000000

CPUID Info : Family: 6 Model: 26

Stepping: 5

Total CPU's

CPU Megahertz : 1600.000000

CPU Clock Megahertz : 1600 Hdw Threads per core : 2 Cores per Socket : 4 NUMA Nodes : 2 CPU's per Node : 8

Number Hardware Counters: 16 Max Multiplex Counters: 512

Name Code Avail Deriv Description

: 16

- PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
- PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses

 Of 107 possible events, 35 are available, of which 9 are derived.

```
    juropa$ papi_avail -d
```

Symbol Event Code Count |Short Descr.|
|Long Description|
|Developer's Notes|
|Derived|
|PostFix|

Native Code[n]: <hex> |name|

PAPI_L1_DCM 0x80000000 1 |L1D cache misses|
 |Level 1 data cache misses|
 ||

|NOT_DERIVED| || Native Code[0]: 0x40002028 |L1D:REPL|

PAPI L1 ICM 0x80000001 1 |L1| cache misses|

|Level 1 instruction cache misses|

|| |NOT_DERIVED| ||

Native Code[0]: 0x40001031 |*L11:MISSES*|

• PAPI_L2_DCM 0x80000002 2 |L2D cache misses|

|Level 2 data cache misses|

|DERIVED_SUB|

Native Code[0]: 0x40000437 |*L2_RQSTS:MISS*| Native Code[1]: 0x40002037 |*L2_RQSTS:IFETCH_MISS*|

• ...

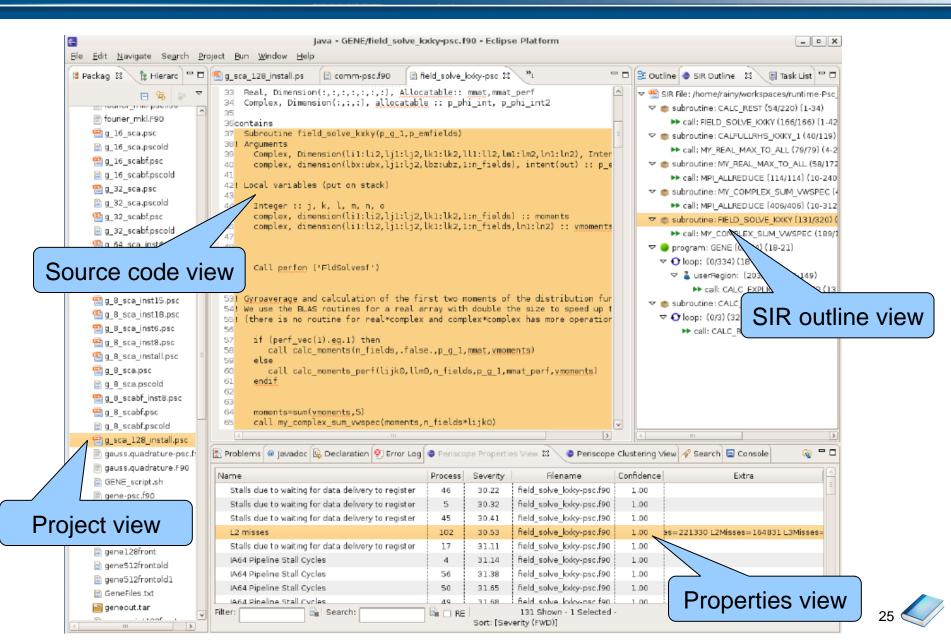
PAPI native counters (and qualifiers)

juropa\$ papi_native_avail Available native events and hardware information. Event Code Symbol | Long Description | 0x40000000 UNHALTED_CORE_CYCLES | count core clock cycles whenever the cloc | | k signal on the specific core is running (not halted). Alias to e | | vent CPU CLK UNHALTED:THREAD 0x40000001 **INSTRUCTION RETIRED** | count the number of instructions at retire | ment. Alias to event INST RETIRED: ANY P 0x40000086 UNC SNP RESP TO REMOTE HOME | Remote home snoop response - LLC d | l oes not have cache line 40000486 :I_STATE | Remote home snoop response - LLC does not have cache | l line 40000886 :S STATE | Remote home snoop response - LLC has cache line in S | state 40001086 :FWD_S_STATE | Remote home snoop response - LLC forwarding cache | I line in S state. 40002086 :FWD | STATE | Remote home snoop response - LLC has forwarded a | I modified cache line 40004086 :CONFLICT | Remote home conflict snoop response 40008086 :WB | Remote home snoop response - LLC has cache line in the M s | l tate 40010086 :HITM | Remote home snoop response - LLC HITM Total events reported: 135

- Automated profile-based performance analysis
 - Iterative on-line performance analysis
 - Multiple distributed hierarchical agents
 - Automatic search for bottlenecks based on properties formalizing expert knowledge
 - MPI wait states, OpenMP overheads and imbalances
 - Processor utilization hardware counters
 - Clustering of processes/threads with similar properties
 - Eclipse-based integrated environment
- Supports
 - SGI Altix Itanium2, IBM Power and x86-based architectures
- Developed by TU Munich
 - Released as open-source
 - http://www.lrr.in.tum.de/periscope

Periscope properties & strategies (examples)

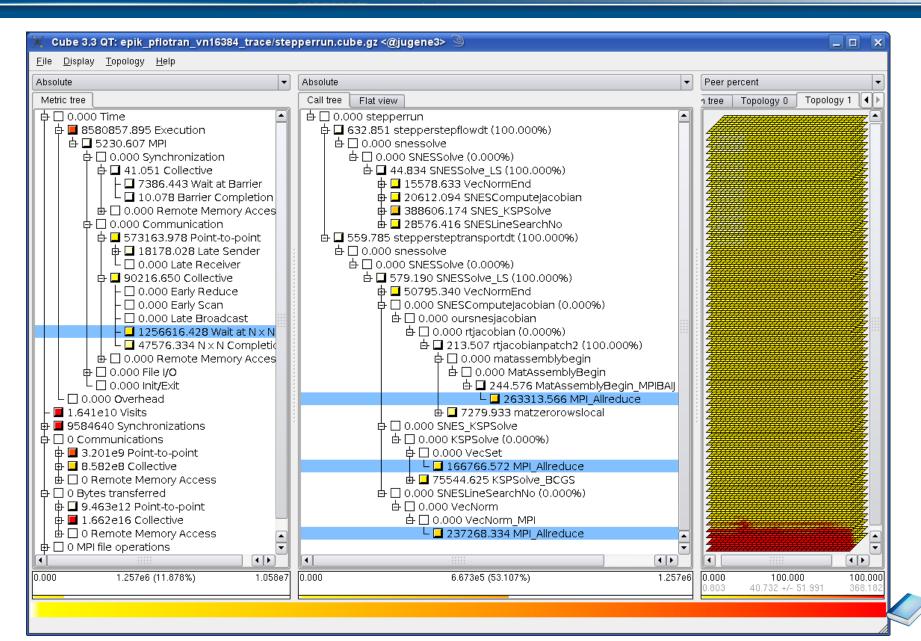
MPI


- Excessive MPI communication time
- Excessive MPI time due to many small messages
- Excessive MPI time in receive due to late sender
- **–** ...

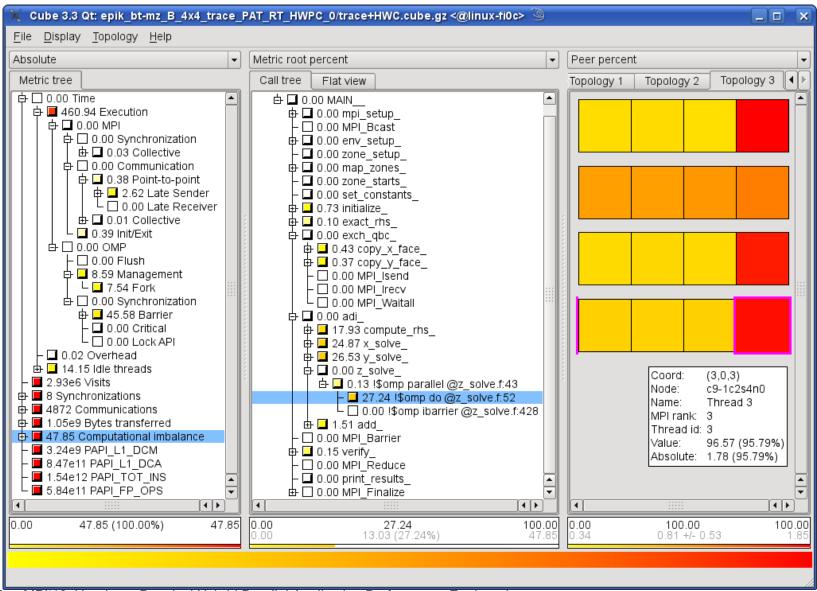
OpenMP

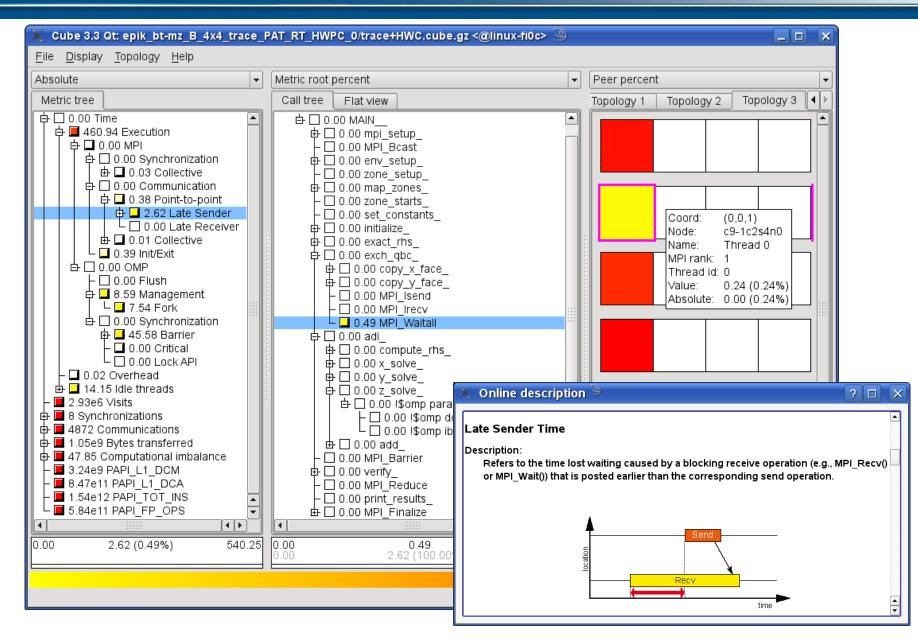
- Load imbalance in parallel region/section
- Sequential computation in master/single/ordered region
- ...
- Hardware performance counters (platform-specific)
 - Cycles lost due to cache misses
 - High L1/L2/L3 demand load miss rate
 - Cycles lost due to no instruction to dispatch
 - ...

Periscope plug-in to Eclipse environment

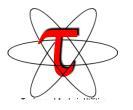


- Automatic performance analysis toolset
 - Scalable performance analysis of large-scale applications
 - particularly focused on MPI & OpenMP paradigms
 - analysis of communication & synchronization overheads
 - Automatic and manual instrumentation capabilities
 - Runtime summarization and/or event trace analyses
 - Automatic search of event traces for patterns of inefficiency
 - Scalable trace analysis based on parallel replay
 - Interactive exploration GUI and algebra utilities for XML callpath profile analysis reports
- Developed by JSC & GRS
 - Released as open-source
 - http://www.scalasca.org/

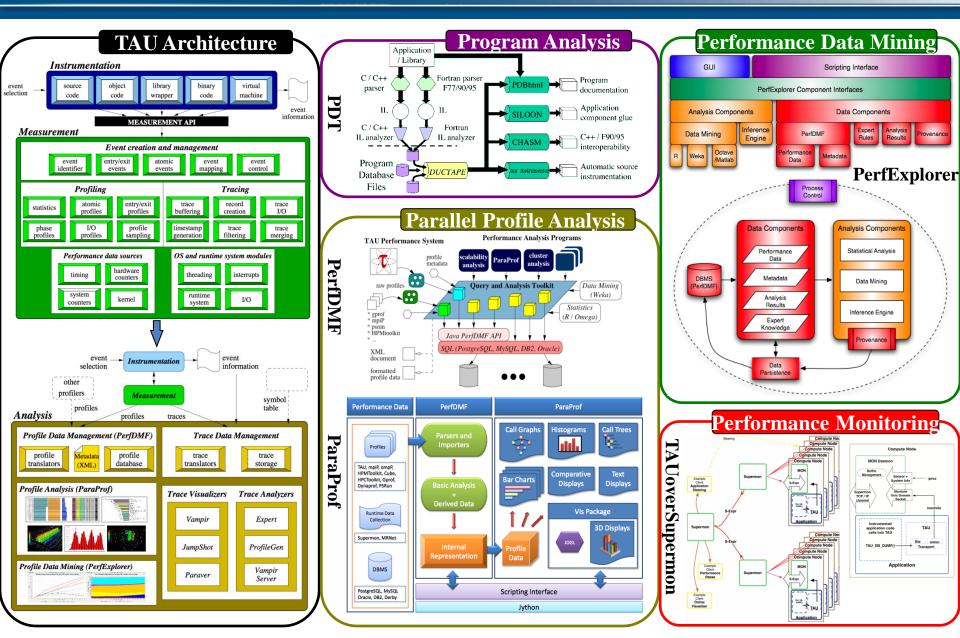

Scalasca automatic trace analysis report


Scalasca hybrid analysis report

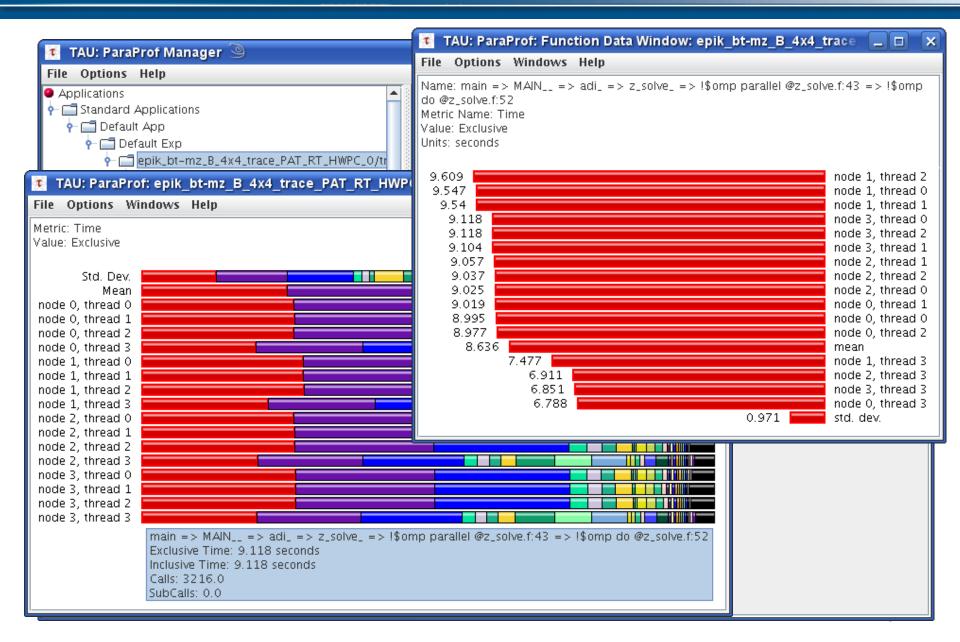
Scalasca automatic trace analysis report

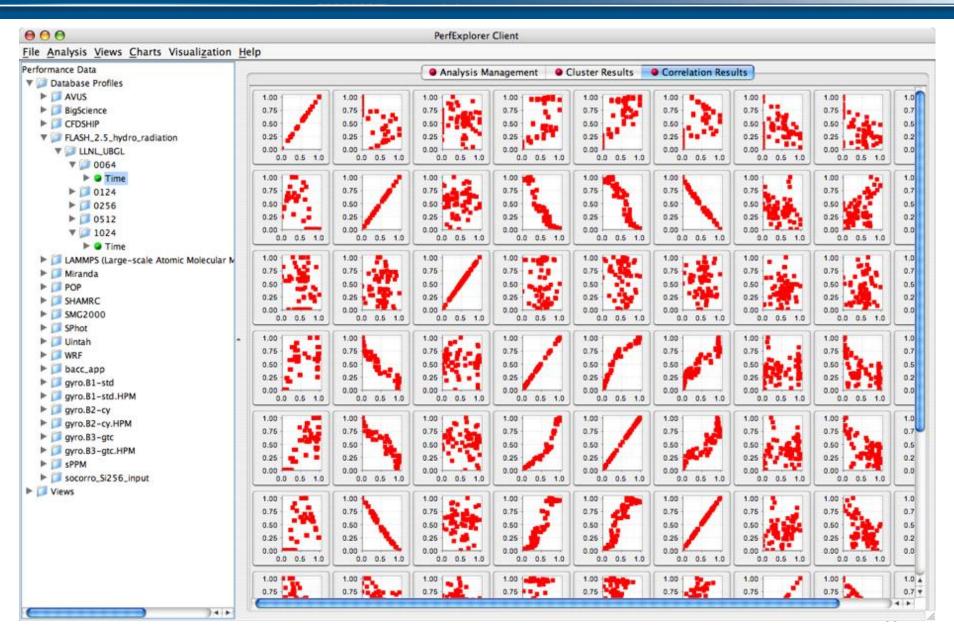


TAU Performance System



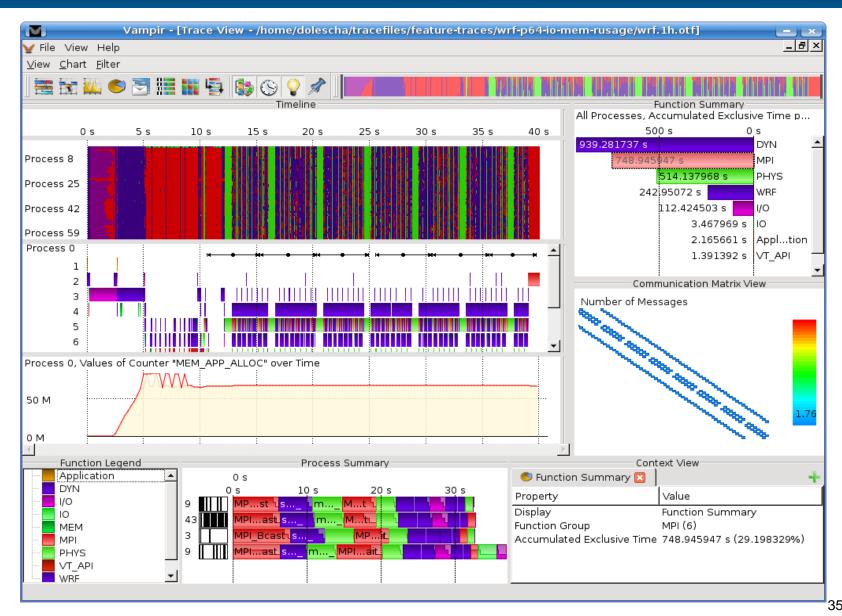
- Integrated performance toolkit
 - Instrumentation, measurement, analysis & visualization
 - Highly customizable installation, API, envvars & GUI
 - Supports multiple profiling & tracing capabilities
 - Performance data management & data mining
 - Targets all parallel programming/execution paradigms
 - Ported to a wide range of computer systems
 - Performance problem solving framework for HPC
 - Extensive bridges to/from other performance tools
 - PerfSuite, Scalasca, Vampir, ...
- Developed by U. Oregon/PRL
 - Broadly deployed open-source software
 - <u>http://tau.uoregon.edu/</u>


TAU Performance System components

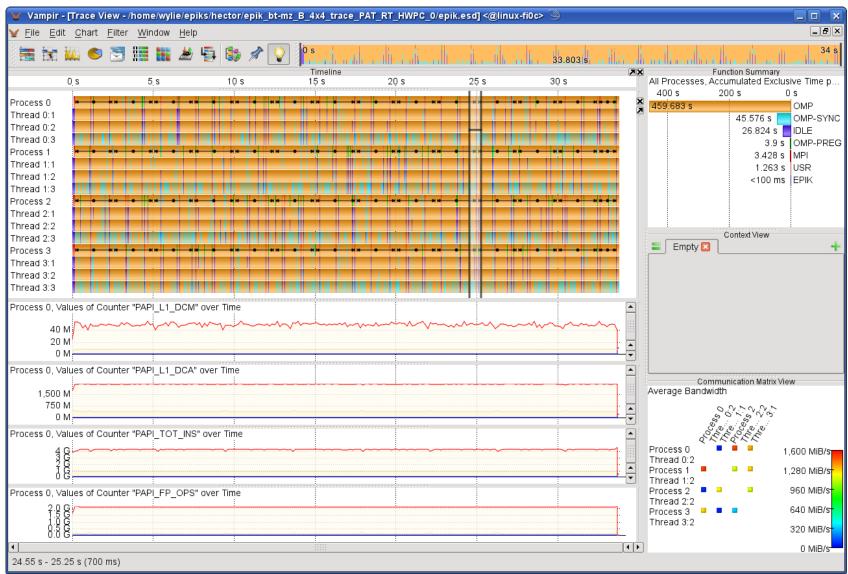

TAU ParaProf GUI displays (selected)

TAU PerfExplorer data mining

Vampir & VampirTrace

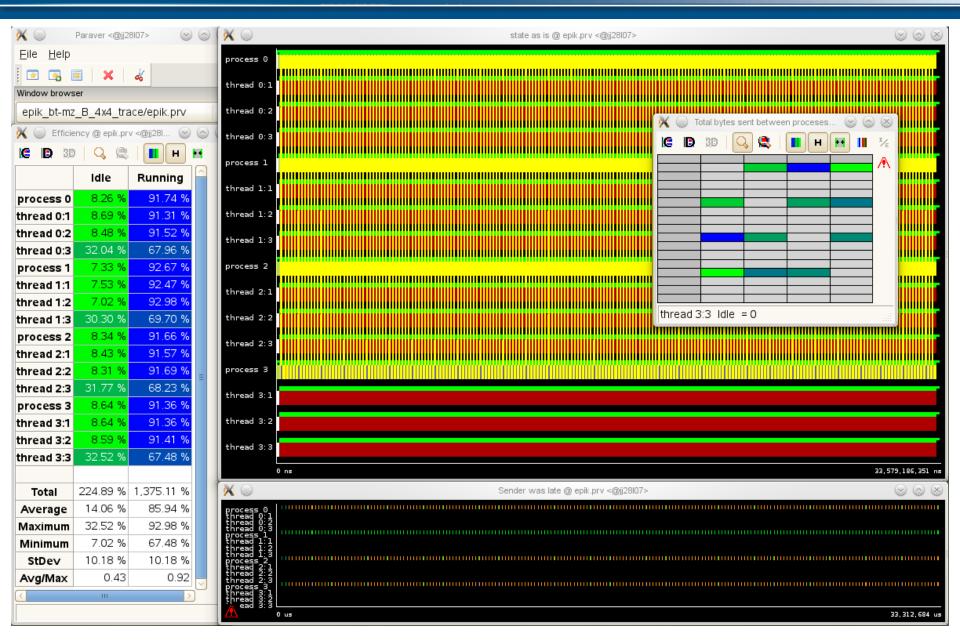


- Interactive event trace analysis
 - Alternative & supplement to automatic trace analysis
 - Visual presentation of dynamic runtime behaviour
 - event timeline chart for states & interactions of processes/threads
 - communication statistics, summaries & more
 - Interactive browsing, zooming, selecting
 - linked displays & statistics adapt to selected time interval (zoom)
 - scalable server runs in parallel to handle larger traces
- Developed by TU Dresden ZIH
 - Open-source VampirTrace library bundled with OpenMPI 1.3
 - http://www.tu-dresden.de/zih/vampirtrace/
 - Vampir Server & GUI have a commercial license
 - http://www.vampir.eu/


Vampir interactive trace analysis GUI

Vampir interactive trace analysis GUI

Vampir interactive trace analysis GUI (zoom)



- Interactive event trace analysis
 - Visual presentation of dynamic runtime behaviour
 - event timeline chart for states & interactions of processes
 - Interactive browsing, zooming, selecting
 - Large variety of highly configurable analyses & displays
- Developed by Barcelona Supercomputing Center
 - Paraver trace analyser and Extrae measurement library
 - Open source available from http://www.bsc.es/paraver/

Paraver interactive trace analysis GUI

- Modular Assembler Quality Analyzer & Optimizer
 - Framework for binary manipulation
 - using plugins and scripting language
 - Tool exploiting framework to produce reports
 - fast prototyping and batch interface
 - STAN static performance model
 - MIL instrumentation language for dynamic analysis
 - building custom performance evaluation tools using HWCs
 - instrumentation of functions, loops, blocks & instructions
- Developed by UVSQ Exascale Computing Research lab
 - Supports Intel x86_64 microarchitecture
 - Available from www.magao.org

VI-HPS component technologies

- Key tool components also provided as open-source
 - Program development environment
 - Eclipse PTP ETFw, UNITE
 - Program/library instrumentation
 - COBI, OPARI, PDToolkit
 - Runtime measurement systems
 - PnMPI, Score-P, UniMCI
 - Scalable I/O
 - SIONlib
 - Libraries & tools for handling (and converting) traces
 - EPILOG, OTF, PEARL
 - Analysis algebra & hierarchical/topological presentation
 - CUBE

- Scalable performance measurement infrastructure
 - Supports instrumentation, profiling & trace collection, as well as online analysis of HPC parallel applications
 - Works with Periscope, Scalasca, TAU & Vampir prototypes
 - Based on updated tool components
 - CUBE4 profile data utilities & GUI
 - OA online access interface to performance measurements
 - OPARI2 OpenMP & pragma instrumenter
 - OTF2 open trace format
- Created by German BMBF SILC & US DOE PRIMA projects
 - JSC, RWTH, TUD, TUM, GNS, GRS, GWT & UO PRL
 - Available as BSD open-source from http://www.score-p.org/

- Portable native parallel I/O library & utilities
 - Scalable massively-parallel I/O to task-local files
 - Manages single or multiple physical files on disk
 - optimizes bandwidth available from I/O servers by matching blocksizes/alignment, reduces metadata-server contention
 - POSIX-I/O-compatible sequential & parallel API
 - adoption requires minimal source-code changes
 - Tuned for common parallel filesystems
 - GPFS (BlueGene), Lustre (Cray), ...
 - Convenient for application I/O, checkpointing,
 - Used by Scalasca tracing (when configured)
- Developed by JSC
 - Available as open-source from
 - http://www.fz-juelich.de/jsc/sionlib/

- Uniform integrated tool environment
 - Manages installation & access to program development tools
 - based on software environment management "modules"
 - commonly used on most cluster and HPC systems
 - configurable for multiple MPI libraries & compiler suites
 - Specifies how & where tools packages get installed
 - including integrating tools where possible
 - Defines standard module names and different versions
 - Supplies pre-defined module files
 - Configurable to co-exist with local installations & policies
- Developed by JSC, RWTH & TUD
 - Available as open-source from http://www.vi-hps.org/projects/unite/