
Tutorial Exercise
NPB-MZ-MPI/BT

Brian Wylie & Markus Geimer
Jülich Supercomputing Centre

scalasca@fz-juelich.de
August 2012

0. Reference preparation for validation
1. Program instrumentation: skin
2. Summary measurement collection & analysis: scan [-s]
3. Summary analysis report examination: square
4. Summary experiment scoring: square -s
5. Event trace collection & analysis: scan -t
6. Event trace analysis report examination: square

● Configuration & customization
■ Instrumentation, Measurement, Analysis, Presentation

Performance analysis steps

NPB-MZ-MPI/BT

● Intermediate-level tutorial example
● Available in MPI, OpenMP & hybrid OpenMP/MPI variants

■ also MPI File I/O variants (collective & individual)
● Summary measurement collection & analysis

■ Automatic instrumentation
► OpenMP, MPI & application functions

■ Summary analysis report examination
■ PAPI hardware counter metrics

● Trace measurement collection & analysis
■ Filter determination, specification & configuration
■ Automatic trace analysis report patterns

● Manual and PDT instrumentation
● Measurement configuration
● Analysis report algebra

● Load the module

● ... and run scalasca for brief usage information

% module load UNITE
UNITE loaded
% module load scalasca
scalasca/1.4.2 loaded

% scalasca
Scalasca 1.4.2
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [-v][-n] {action}
 1. prepare application objects and executable for measurement:
 scalasca -instrument <compile-or-link-command> # skin
 2. run application under control of measurement system:
 scalasca -analyze <application-launch-command> # scan
 3. interactively explore measurement analysis report:
 scalasca -examine <experiment-archive|report> # square

 -v: enable verbose commentary
 -n: show actions without taking them
 -h: show quick reference guide (only)

Load the Scalasca module

● Prefix compile/link commands in Makefile definitions
(config/make.def) with the Scalasca instrumenter

● or use PREP macro as customizable preparation preposition

■ By default, PREP macro is not set and no instrumentation is
performed for a regular “production” build

■ Specifying a PREP value in the Makefile or on the make
command line uses it as a preposition, e.g., for instrumentation
► % make PREP=“scalasca -instrument” ...
scalasca -instrument mpif77 -O -fopenmp -c bt.f

MPIF77 = scalasca -instrument mpif77
FLINK = $(MPIF77)
FFLAGS = -O -fopenmp

bt-mz: $(OBJECTS)
 $(FLINK) $(FFLAGS) -o bt-mz $(OBJECTS)
.f.o:
 $(MPIF77) $(FFLAGS) -c $<

MPIF77 = $(PREP) mpif77

NPB instrumentation

NPB-MZ-MPI/BT instrumented build

● Return to root directory and clean-up

● Re-build specifying Scalasca instrumenter as PREP

% make clean

% make bt-mz CLASS=B NPROCS=4 PREP=”scalasca -instrument”
cd BT-MZ; make CLASS=B NPROCS=4 VERSION=
gmake: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 B
scalasca -instrument mpif77 -c -O -fopenmp bt.f
...
scalasca -instrument mpif77 -c -O -fopenmp setup_mpi.f
cd ../common; scalasca -instrument mpif77 -c -O -fopenmp timers.f
scalasca -instrument mpif77 -O -fopenmp -o ../bin.scalasca/bt-mz_B.4 \
bt.o make_set.o initialize.o exact_solution.o exact_rhs.o \
set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o \
x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o \
../common/print_results.o ../common/timers.o
INFO: Instrumented executable for OMP+MPI measurement
gmake: Leaving directory 'BT-MZ'

● Run the application using the Scalasca measurement
collection & analysis nexus prefixed to launch command

● Produces experiment directory ./epik_bt-mz_B_4x4_sum

% cd bin.scalasca
% OMP_NUM_THREADS=4 scalasca -analyze mpiexec -np 4 ./bt-mz_B.4
S=C=A=N: Scalasca 1.3 runtime summarization
S=C=A=N: ./epik_bt-mz_B_4x4_sum experiment archive
S=C=A=N: Sun Mar 29 16:36:31 2009: Collect start
mpiexec -np 4 ./bt-mz_B.4
[00000]EPIK: Created new measurement archive ./epik_bt-mz_B_4x4_sum
[00000]EPIK: Activated ./epik_bt-mz_B_4x4_sum [NO TRACE] (0.006s)

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_bt-mz_B_4x4_sum
[00000]EPIK: 164 unique paths (178 max paths, 7 max frames, 0 unknown)
[00000]EPIK: Unifying... done (0.023s)
[00000]EPIK: Collating... done (0.049s)
[00000]EPIK: Closed experiment ./epik_bt-mz_B_4x4_sum (0.073s)
S=C=A=N: Sun Mar 29 16:36:45 2009: Collect done (status=0) 57s
S=C=A=N: ./epik_bt-mz_B_4x4_sum complete.

BT-MZ summary measurement

● Interactive exploration with Scalasca GUI

● The measurement archive directory ultimately contains
■ a copy of the execution output (epik.log)
■ a record of the measurement configuration (epik.conf)
■ the basic analysis report that was collated after measurement

(epitome.cube)
■ the complete analysis report produced during post-processing

(summary.cube.gz)

% scalasca -examine epik_bt-mz_B_4x4_sum
INFO: Post-processing runtime summarization result...
INFO: Displaying ./epik_bt-mz_B_4x4_sum/summary.cube...

 [GUI showing summary analysis report]

BT-MZ summary analysis report examination

Analysis report exploration (opening view)

Left-click mouse on [+] tree nodes to individually expand/collapse them

Analysis report exploration (system tree)

Distribution of
selected metric
for call path by
process/thread

Large system trees often more conveniently shown topologically

Analysis report exploration (call tree)

Distribution of
selected metric

across the call tree

Selection updates
metrics shown in
columns to right

Upon expansion tree node changes from inclusive to exclusive value

Analysis report exploration (metric tree)

Split base metrics into
more specific metrics

Select metric and right-click mouse for its description and diagnosis

Analysis report exploration (source browser)

Split base metrics into
more specific metrics

Source location requires debug information (compile/link with -g flag)

Congratulations!?

● If you made it this far, you successfully used Scalasca to
■ instrument the application
■ analyze its execution with a summary measurement, and
■ examine it with the interactive analysis report explorer GUI

● ... revealing the call-path profile annotated with
■ Time metrics (including MPI & OpenMP times)
■ Visit counts
■ MPI message statistics (sends/receives, bytes sent/received)
■ Computational imbalance

● ... but how good was the measurement?
■ The measured execution produced the desired valid result
■ however, the execution took rather longer than expected!

► even when ignoring measurement start-up/completion, therefore
► it was probably dilated by instrumentation/measurement overhead

● Report scoring as textual output

● Region/callpath classification
■ MPI (pure MPI library functions)
■ OMP (pure OpenMP functions/regions)
■ USR (user-level source local computation)
■ COM (“combined” USR + OpenMP/MPI)
■ ANY/ALL (aggregate of all region types)

% scalasca -examine -s epik_bt-mz_B_4x4_sum
cube3_score -r ./epik_bt-mz_B_4x4_sum/summary.cube
Reading ./epik_bt-mz_B_4x4_sum/summary.cube... done.
Est. aggregate size of event trace (total_tbc): 39,231,218,072 bytes
Est. size of largest process trace (max_tbc): 2,632,541,576 bytes
(When tracing set ELG_BUFFER_SIZE to avoid intermediate flushes or
 reduce requirements using filter file listing names of USR regions.)

INFO: Score report written to ./epik_bt-mz_B_4x4_sum/epik.score

BT-MZ summary analysis report scoring

USR

USR

COM

COM USR

USR MPIOMP

● Score report breakdown by region
% less epik_bt-mz_B_4x4_sum/epik.score

flt type max_tbc time % region
 ANY 2632541576 871.73 100.00 (summary) ALL
 MPI 73064 13.27 1.52 (summary) MPI
 OMP 5186496 496.36 56.94 (summary) OMP
 COM 1087824 3.15 0.36 (summary) COM
 USR 2626194144 358.88 41.17 (summary) USR

 USR 841575744 109.22 12.53 matmul_sub_
 USR 841575744 168.61 19.34 binvcrhs_
 USR 841575744 68.95 7.91 matvec_sub_
 USR 37120680 5.14 0.59 binvrhs_
 USR 37120680 4.10 0.47 lhsinit_
 USR 29960856 2.85 0.33 exact_solution_
 COM 308736 0.82 0.09 copy_x_face_
 COM 308736 0.81 0.09 copy_y_face_
 OMP 283008 2.07 0.24 !$omp parallel @exch_qbc.f:204
 OMP 283008 2.02 0.23 !$omp parallel @exch_qbc.f:215
 OMP 283008 2.16 0.25 !$omp parallel @exch_qbc.f:244
 OMP 283008 2.01 0.23 !$omp parallel @exch_qbc.f:255
...

USR

USR

COM

COM USR

USR MPIOMP

BT-MZ summary analysis report breakdown

BT-MZ summary analysis score

● Summary measurement analysis score reveals
■ Total size of event trace would be almost 40GB
■ Maximum trace buffer size would be over 2.5GB per thread

► smaller buffer would require flushes to disk during measurement
resulting in substantial perturbation

■ 99.76% of the trace requirements are for USR regions
► purely computational routines never found on COM call-paths

common to communication routines
■ These USR regions contribute around 40% of total time

► however, much of that is very likely to be measurement overhead
for a few frequently-executed small routines

● Advisable to tune measurement configuration
■ Specify an adequate trace buffer size
■ Specify a filter file listing (USR) regions not to be measured

● Report scoring with prospective filter listing USR regions
% scalasca -examine -s -f bt.filt epik_bt-mz_B_4x4_sum
cube3_score -r -f bt.filt ./epik_bt-mz_B_4x4_sum/summary.cube
Applying filter "./bt.filt":
Estimated aggregate size of event trace (total_tbc): 16,852,888 bytes
Estimated size of largest process trace (max_tbc): 1,053,304 bytes

INFO: Score report written to ./epik_bt-mz_B_4x4_sum/epik.score_bt.filt

% less epik_bt-mz_B_4x4_sum/epik.score_bt.filt
flt type max_tbc time % region
 + FLT 2626190016 358.88 41.17 (summary) FLT
 * ANY 6351584 512.85 58.83 (summary) ALL-FLT
 - MPI 73064 13.27 1.52 (summary) MPI-FLT
 - OMP 5186496 496.36 56.94 (summary) OMP-FLT
 * COM 1087824 3.15 0.36 (summary) COM-FLT
 * USR 4152 0.00 0.00 (summary) USR-FLT

 + USR 841575744 109.22 12.53 matmul_sub_
 + USR 841575744 168.61 19.34 binvcrhs_
 + USR 841575744 68.95 7.91 matvec_sub_
 + USR 37120680 5.14 0.59 binvrhs_
 + USR 37120680 4.10 0.47 lhsinit_
 + USR 29960856 2.85 0.33 exact_solution_
...

% cat bt.filt
bt-mz filter
matmul_sub_
binvcrhs_
matvec_sub_
binvrhs_
lhsinit_
exact_solution_
timer_*

Filtered
routines
marked
with '+'

BT-MZ summary analysis report filtering

● Rename former measurement archive directory,
set new filter configuration and re-run the measurement
% mv epik_bt-mz_B_4x4_sum epik_bt-mz_B_4x4_sum.nofilt
% export EPK_FILTER=bt.filt
% OMP_NUM_THREADS=4 scalasca -analyze mpiexec -np 4 ./bt-mz_B.4
S=C=A=N: Scalasca 1.3 runtime summarization
S=C=A=N: ./epik_bt-mz_4x4_sum experiment archive
S=C=A=N: Sun Mar 29 16:58:34 2009: Collect start
mpiexec -np 4 ./bt-mz_B.4
[00000.0]EPIK: Created new measurement archive ./epik_bt-mz_B_4x4_sum
[00000.0]EPIK: EPK_FILTER “bt.filt” filtered 10 of 113 functions
[00000.0]EPIK: Activated ./epik_bt-mz_B_4x4_sum [NO TRACE] (0.071s)

[... Application output ...]

[00000.0]EPIK: Closing experiment ./epik_bt-mz_B_4x4_sum
[00000.0]EPIK: 134 unique paths (148 max paths, 7 max frames, 0 unkns)
[00000.0]EPIK: Unifying... done (0.014s)
[00000.0]EPIK: Collating... done (0.059s)
[00000.0]EPIK: Closed experiment ./epik_bt-mz_B_4x4_sum (0.075s)
S=C=A=N: Sun Mar 29 16:58:41 2009: Collect done (status=0) 36s
S=C=A=N: ./epik_bt-mz_B_4x4_sum complete.

BT-MZ filtered summary measurement

● Scoring of new analysis report as textual output

● Significant reduction in runtime (measurement overhead)
■ Not only reduced time for USR regions, but OMP reduced too!

● Further measurement tuning (filtering) may be appropriate
■ e.g., “timer_*” filters timer_start_, timer_read_, etc.

% scalasca -examine -s epik_bt-mz_B_4x4_sum
INFO: Post-processing runtime summarization result...
cube3_score ./epik_bt-mz_B_4x4_sum/summary.cube
Estimated aggregate size of event trace (total_tbc): 83,920,952 bytes
Estimated size of largest process trace (max_tbc): 6,351,584 bytes
...

INFO: Score report written to ./epik_bt-mz_B_4x4_sum/epik.score

flt type max_tbc time % region
 ANY 6351584 531.69 100.00 (summary) ALL
 MPI 73064 13.27 2.50 (summary) MPI
 OMP 5186496 515.11 96.88 (summary) OMP
 COM 1087824 3.22 0.61 (summary) COM
 USR 4152 0.00 0.00 (summary) USR

BT-MZ filtered summary analysis report score

Summary analysis report exploration (filtered)

Same message statistics,
but times greatly reduced

● Re-run the application using Scalasca nexus with “-t” flag

● Separate trace file per MPI rank written straight into new
experiment directory ./epik_bt-mz_B_4x4_trace

% OMP_NUM_THREADS=4 scalasca -analyze -t mpiexec -np 4 ./bt-mz_B.4
S=C=A=N: Scalasca trace collection and analysis
S=C=A=N: ./epik_bt-mz_B_4x4_trace experiment archive
S=C=A=N: Sun Apr 5 18:50:57 2009: Collect start
mpiexec -np 4 ./bt-mz_B.4
[00000.0]EPIK: Created new measurement archive ./epik_bt-mz_B_4x4_trace
[00000.0]EPIK: EPK_FILTER "npb.filt" filtered 10 of 113 functions
[00000.0]EPIK: Activated ./epik_bt-mz_B_4x4_trace [10000000 bytes] (0.051s)

[... Application output ...]

[00000.0]EPIK: Closing experiment ./epik_bt-mz_B_4x4_trace [0.069GB] (max 18466028)
[00000.0]EPIK: Flushed 6351570 bytes to file ./epik_bt-mz_B_4x4_trace/ELG/00000
[00000.0]EPIK: 134 unique paths (148 max paths, 7 max frames, 0 unknowns)
[00000.0]EPIK: Unifying... done (0.021s)
[00003.0]EPIK: Flushed 6351570 bytes to file ./epik_bt-mz_B_4x4_trace/ELG/00003
...
[00001.0]EPIK: Flushed 6351570 bytes to file ./epik_bt-mz_B_4x4_trace/ELG/00001
[00000.0]EPIK: 1flush=0.001GB@2.582MB/s, Pflush=0.015GB@35.458MB/s
[00000.0]EPIK: Closed experiment ./epik_bt-mz_B_4x4_trace (0.178s)
S=C=A=N: Sun Apr 5 18:51:05 2009: Collect done (status=0) 41s
[.. continued ...]

BT-MZ trace measurement collection ...

● Continues with automatic (parallel) analysis of trace files

● Produces trace analysis report in experiment directory

S=C=A=N: Sun Apr 5 18:51:05 2009: Analyze start
mpiexec -np 4 scout.hyb ./epik_bt-mz_B_4x4_trace
SCOUT Copyright (c) 1998-2009 Forschungszentrum Juelich GmbH

Analyzing experiment archive ./epik_bt-mz_B_4x4_trace

Reading definitions file ... done (0.563s).
Reading event trace files ... done (0.495s).
Preprocessing ... done (0.134s).
Analyzing event traces ... done (2.186s).
Writing CUBE report ... done (0.160s).

Total processing time : 3.737s
Max. memory usage : 47.504MB

S=C=A=N: Sun Apr 5 18:51:09 2009: Analyze done (status=0) 4s
S=C=A=N: ./epik_bt-mz_B_4x4_trace complete.

% scalasca -examine epik_bt-mz_B_4x4_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report ...
INFO: Displaying ./epik_bt-mz_B_4x4_trace/trace.cube...

 [GUI showing trace analysis report]

BT-MZ trace measurement … analysis

Scalasca topological presentation

Execution topology of
4 MPI processes each
with 4 OpenMP threads

Scalasca hardware counter metrics

Additional hardware
counter metrics listed

Scalasca computational imbalance heuristic

Deviation from mean
computation times

Scalasca trace analysis report exploration

Additional trace-based
metrics in metric hierarchy

● Scalasca analysis reports can be viewed with ParaProf
for a multitude of interactive 2D & 3D graphical profiles

● Scalasca traces can be viewed directly with Vampir7
for interactive timeline and communication matrix displays

● Scalasca traces can also be merged and then converted
to the formats of other analysis and visualization tools

■ Trace merging and conversion are both done serially
and therefore only practical for relatively small traces.

■ External tools can often manage to analyze traces that
Scalasca's automatic trace analyzer can't handle

% paraprof epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0/trace.cube.gz

Further examination of Scalasca experiments

% vampir epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0/epik.esd

% elg_merge epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0
% elg2prv epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0
% wxparaver epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0/epik.prv

Paraprof views of Scalasca analysis report

% paraprof epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0/trace.cube.gz

Vampir visual trace exploration (overview)

% vampir epik_bt-mz_B_4x4_trace_PAT_RT_HWPC_0/epik.esd

Vampir visual trace exploration (zoom)

Trace conversion & analysis with Paraver

% elg_merge epik_bt-mz_B_4x4_trace
% elg2prv epik_bt-mz_B_4x4_trace
% wxparaver epik_bt-mz_B_4x4_trace/epik.prv

● Traces can easily become extremely large and unwieldy
■ size is proportional to number of processes/threads (width),

duration (length) and detail (depth) of measurement
● Traces containing intermediate flushes are of little value

■ uncoordinated flushes result in cascades of distortion
► reduce size of trace such that it fits in available buffer space

● Traces should generally be written to a parallel filesystem
■ /work or /scratch are typically provided for this purpose

● Moving large traces between filesystems often impractical
■ however, systems with more memory can analyse larger traces

► alternatively, run trace analyzer with undersubscribed nodes

● Traces can be archived or deleted after analysis completed
to recover storage space
■ Scalasca binary trace data is stored in the ELG subdirectory

Warnings and tips regarding tracing

● Consult quick reference guide for further information

● CUBE GUI provides context sensitive help and on-line
metric descriptions (including problem diagnosis hints)

● EPIK archive directories contain analysis report(s),
measurement collection & analysis logs, etc.

● Instrumentation, measurement, analysis & presentation
can all be extensively customized
■ covered in more detailed presentation

● Visit www.scalasca.org or mail scalasca@fz-juelich.de

% scalasca -h
Scalasca 1.4 – quick reference guide
pdfview /UNITE/packages/scalasca/1.4/doc/manuals/QuickReference.pdf

 [PDF viewer showing quick reference guide]

Further information

0. Reference preparation for validation
1. Program instrumentation: skin
2. Summary measurement collection & analysis: scan [-s]
3. Summary analysis report examination: square
4. Summary experiment scoring: square -s
5. Event trace collection & analysis: scan -t
6. Event trace analysis report examination: square
● General usage/help: scalasca [-h]
● Instrumentation, measurement, analysis & presentation can

all be extensively customized
■ covered in more detailed presentation

● Visit www.scalasca.org or mail scalasca@fz-juelich.de

Scalasca usage recap

http://www.scalasca.org/
mailto:scalasca@fz-juelich.de

37

● Prepares application objects & executables for measurement
■ skin = scalasca -instrument
■ skin [options] <compile-or-link-command>

► defaults to automatic instrumentation of USR routines by compiler
▬ available for most compilers, but not all
▬ when not desired, disable with -comp=none

► for OpenMP, includes source-level pre-processing of directives
► for MPI, links wrappers to PMPI library routines

■ [-pdt] pre-process sources with PDToolkit (when available)
► configurable instrumentation of specified routines (or all by default)

■ Manual instrumentation activation
► offers complementary program structure information for analyses

via user-provided annotations (e.g., phases, loops, ...)
► [-user] enable EPIK user instrumentation API macros
► [-pomp] enable processing of POMP region pragmas/directives

skin – Scalasca application instrumenter

38

● Override default instrumenter configuration
■ SKIN_VERBOSE={ 0 | 1 }

► provides verbose report of instrumenter compile and link commands
► primarily for debugging and helpful when reporting problems

■ SKIN_MODE={ auto | MPI | MPI+OMP | OMP | serial | none }
► the instrumenter generally determines the mode itself, but in some

cases another mode may be more appropriate
► “none” can be specified for pre-build configure tests and then unset

for the actual build
■ SKIN_COMP={ all | none | … }

► compiler instrumentation specification

SKIN configuration variables

MPI library instrumentation

● The MPI standard specifies the PMPI library interposition
(“wrapping”) mechanism based on weak symbols
■ simply requires re-linking statically-linked executables

or library preloading for dynamically-linked executables
■ widely used by debugging and performance tools
■ generally negligible measurement overhead

► event traces still grow linearly with number of MPI events!
► certain MPI operations may be executed many times

▬ e.g., MPI_Iprobe

► local functions may have disproportionate overheads
▬ e.g., MPI_Comm_size

● Scalasca can be configured to provide wrappers for almost
all or subsets of MPI routines, from which subgroups can
be enabled for measurements via EPK_MPI_ENABLED

Scalasca MPI limitations

● Certain MPI operations are required by the measurement
library itself, particularly during initialization & finalization
■ Scalasca measurement is not possible for MPI applications

which abort or don't correctly call MPI_Finalize from all ranks
● Scalasca's automatic trace analyzer relies on consistent

traces of MPI communication & synchronization events
■ traces don't necessarily have to be complete, provided they

are consistent for all MPI processes
● Dynamic process creation (MPI_Spawn) is not supported
● C++ bindings (deprecated by MPI-2.2) are not supported
● Fortran wrappers are based on associated C routines

■ differences in bindings may result in errors during execution
or with measurement

41

● In the absence of compiler support for OpenMP events,
non-proprietary tools must rely on source instrumentation
■ OPARI parses source files for OpenMP directives/pragmas

and API calls and adds corresponding “POMP” instrumentation
► parallel regions and worksharing constructs are defined with

immediate context based on source filename and linenumber(s)
► instrumentation can be selectively disabled for locks and other

synchronizations which can have potentially high overhead
■ OPARI2 uses more invasive processing to avoid problems with

parallel, multi-directory and multi-executable builds
► also can instrument ORDERED constructs and tasks

OpenMP instrumentation

42

● Every source file containing OpenMP must be instrumented
■ OpenMP used within uninstrumented modules or libraries is at

best invisible (and likely to result in measurement corruption)
■ Processing source files (particularly Fortran) is challenging

and while OPARI2 is improving it is still sometimes incorrect
● Included source files, conditionally-defined code & macros

are not processed by OPARI, which can lead to incomplete
or inconsistent instrumentation
■ as a workaround files may be explicitly preprocessed prior to

instrumentation (and OPARI processing)
● Nested OpenMP parallel regions are not supported and will

result in measurement failures even if nesting is disabled
● Consult Scalasca/OPARI2 OPEN_ISSUES for more

Scalasca OpenMP limitations

Compiler instrumentation

● Automatic source instrumentation by the compiler [-comp]
■ convenient, reliable and supported by most current compilers,

though interfaces and implementations differ considerably
► instrumentation may inhibit or disable compiler optimizations
► routines may be instrumented before or after in-lining

● By default, Scalasca instruments all routines in source file
■ instrumentation of certain source files or routines may result

in excessive overheads (even with measurement filtering)
■ use -comp=none to disable compiler instrumentation
■ provide compiler-specific specifications with -comp=...

► refer to compiler manuals for details
► GCC: -finstrument-functions-exclude-file-list=file1.c,file2.f90

-finstrument-functions-exclude-function-list=substr1,substr2
► IBM XL: -qfunctrace-func1:routine2:namespace::
► Intel: -tcollect-filter=<file.txt>

PDT-based instrumentation

● Automatic source instrumentation using PDToolkit [-pdt]
■ only available if configured when Scalasca installed

● By default, instruments all routines in source file
■ source routines are automatically instrumented by compiler,

therefore use -comp=none to avoid duplicate instrumentation
● Selective instrumentation of specified routines

■ -optTauSelectFile=<filename>
■ TAU-format plain text specification file

► list names of source files and routines to include/exclude from
instrumentation, using wildcard patterns

▬ unsupported TAU instrumentation features are silently ignored

► refer to TAU/PDToolkit documentation for details
► refer to Scalasca User Guide for known limitations

PDT-based selective instrumentation file

● List routines with their PDT names one per line

● … and specify file when instrumenting

% cat config/pdt.inst
instrumentation specification for PDT
BEGIN_EXCLUDE_LIST
 BINVCRHS
 MATVEC_SUB
 MATMUL_SUB
 BINVRHS
 EXACT_SOLUTION
 LHS#INIT
 TIMER_#
END_EXCLUDE_LIST

% make bt-mz CLASS=W NPROCS=4 PREP=”scalasca -inst -comp=none -pdt \
 -optTauSelectFile=$PWD/config/pdt.inst”

● PDT and EPIK user instrumentation macros expand to
additional statements in program source files
■ this should be unproblematic, except for fixed-format Fortran

where the default line-length limit (72 characters) may be
exceeded and result in curious compilation errors

■ Fortran compilers allow extended source lines via special
compile flags, e.g.,
► CCE: -N132
► GNU: -ffixed-line-length-none
► Intel/Pathscale: -extend-source
► PGI: -Mextend

■ For BT example therefore need to adjust FFLAGS

Fixed-format Fortran limitations

% make bt-mz CLASS=W NPROCS=4 PREP=”scalasca -inst -comp=none -pdt” \
 FFLAGS=”-O3 -ffixed-line-length-none”

EPIK user instrumentation API

● EPIK user instrumentation API
■ #include “epik_user.h”
■ EPIK_USER_REG(epik_solve, “<<Solve>>”)
■ EPIK_USER_START(epik_solve)
■ EPIK_USER_END(epik_solve)

● Can be used to mark initialization, solver & other phases
■ Annotation macros ignored by default
■ Instrumentation enabled with “-user” flag to instrumenter
■ Also available for Fortran

► #include “epik_user.inc” and use C preprocessor

● Appear as additional regions in analyses
■ Distinguishes performance of important phase from rest

EPIK user instrumentation: F77 example

● In NPB3.3-MZ-MPI/BT-MZ compare bt.f & bt_epik.F
■ the .F suffix indicates that it should be preprocessed

► otherwise could specify some obscure compiler flags

● EPIK user API #include'd at the top
■ #include ''epik_user.inc''

● EPIK user instrumentation macros register & mark phases
''<<INIT>>'', ''<<STEP>>'', ''<<FINI>>''

● within the main routine ''<<MAIN>>''
● Edit BT-MZ/makefile to set: MAIN = bt_epik.F
● Instrument specifying -user and extended source lines

% make bt-mz CLASS=W NPROCS=4 PREP=”scalasca -inst -comp=none -user” \
 FFLAGS=”-O3 -ffixed-line-length-none”

49

EPIK user control API

● Specifies when measurement should be paused
■ events are not included within call-path summary nor trace
■ reduces measurement overhead and size of data collected

● Can be used for undesired execution phases (e.g.,
initialization) or particular subsets of iterations

● Pausing regions defined like other user regions
■ EPIK_PAUSE_START()
■ EPIK_PAUSE_END()

● Shown in summary and trace analyses as special region
“<<PAUSING>>”

● Pause regions are not synchronized between MPI ranks
and are ignored within OpenMP parallel regions

● Nesting of pause regions is not supported

50

scan – Scalasca collection/analysis nexus

● Runs application under control of measurement system to
collect and analyze an execution experiment
■ scan = scalasca -analyze
■ scan [options] <application-launch-command>

► e.g., scan [options] [$MPIEXEC [mpiexec-options]] [target [args]]
■ [-s] collect summarization experiment [default]
■ [-t] collect event traces and then analyze them automatically
■ Additional options

► [-e title] specify experiment archive (directory) name: epik_title
► [-f filter] specify file listing routines to ignore during measurement
► [-m metric1:metric2:...] include hardware counter metrics
► [-n] preview scan and perform checks but don't execute
► [-q] quiesce (disable most) measurement collection
► [-a] (re-)analyze a previously collected trace experiment

EPIK measurement configuration

● Via ./EPIK.CONF file

● Via environment variables

● Via command-line flags (partially)

● To show current/default configuration

● Actual Scalasca measurement configuration saved in
experiment archive as epik.conf

EPK_FILTER=smg2000.filt
EPK_MPI_ENABLED=CG:COLL:ENV:IO:P2P:RMA:TOPO
ELG_BUFFER_SIZE=40000000

% export EPK_FILTER=smg2000.filt
% export EPK_MPI_ENABLED=CG:COLL:ENV:IO:P2P:RMA:TOPO
% export ELG_BUFFER_SIZE=40000000

% scalasca -analyze -f smg2000.filt ...

% epik_conf

Summary analysis report with HWC metrics

Hardware counter metrics
each shown as root metrics

EPK_METRICS=PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_TOT_CYC

Groups of counter metrics

● Specified as a colon-separated list in EPK_METRICS or
on command-line

● or use a predefined group from EPK_METRICS_SPEC

● or use another file specifying groups

● or define your own groups in a custom specification file

EPK_METRICS=PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_TOT_CYC

scan -m PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_TOT_CYC ...

EPK_METRICS_SPEC=/opt/scalasca/example/METRICS.SPEC_POWER6
EPK_METRICS=PM_BRANCH2

EPK_METRICS=ITANIUM2_TLB

Opteron groupings defined by CrayPAT
aggroup PAT_RT_HWPC_0 = PAPI_L1_DCM PAPI_L1_DCA PAPI_TOT_INS PAPI_FP_OPS
aggroup PAT_RT_HWPC_1 = PAPI_L1_DCM PAPI_L1_DCA PAPI_TLB_DM PAPI_FP_OPS
aggroup PAT_RT_HWPC_6 = PAPI_FPU_IDL PAPI_RES_STL PAPI_STL_ICY INSTRUCTION_FETCH_STALL
aggroup PAT_RT_HWPC_7 = DECODER_EMPTY DISPATCH_STALL_FOR_FPU_FULL DISPATCH_STALLS ...
aggroup PAT_RT_HWPC_10 = PAPI_L2_DCM PAPI_L1_DCA L3_CACHE_MISSES PAPI_L2_DCA

54

● Generally, the SCAN nexus will correctly parse execution
command lines, but occasionally you may need to help it

● MPI launcher arguments may need to be explicitly
separated from the target application with a double-dash

● Unusual MPI launcher options may need to be quoted

■ (On most systems -verbose doesn't take an argument)
● Explicitly specify the instrumented target executable name

when using imposition commands/scripts

■ (dplace, omplace and numactl are common imposters)

% scalasca -analyze mpirun -np 16 -- a.exe arg

% scalasca -analyze mpirun -np 16 “-verbose 2” a.exe arg

% export SCAN_TARGET=a.exe
% scalasca -analyze imposter.sh i.arg a.exe arg
% scan -t mpirun -np 16 imposter.sh i.arg a.exe arg

Hints for the Scalasca analysis nexus

55

● SCAN_ANALYZE_OPTS specifies trace analyzer options:
■ '-i' enables determination of pattern instance statistics

including the worst instance
■ '-s' enables correction of timestamps from compute nodes

with insufficiently synchronized clocks
● SCAN_CLEAN specifies whether to remove trace data

after successful automatic trace analysis [0]
● SCAN_TRACE_ANALYZER specifies an alternative trace

analyzer, or 'none' to skip automatic trace analysis
● SCAN_WAIT specifies max number of seconds to wait

after measurement completion for synchronization of the
filesystems on compute nodes with the launch node [0]

SCAN configuration variables

56

● Multi-executable (MPMD) executions may work fine,
however, there are known limitations and Scalasca may
need some assistance
■ all executables need to have been instrumented by Scalasca

► if any are MPI+OMP, then the first executable also needs to be
linked in MPI+OMP mode

■ the number of MPI processes may need to be explicitly
specified via SCAN_MPI_RANKS

● MPI launcher specifications in a configuration file are not
parsed (even when it is specified on the command line)

SCAN limitations

57

● Prepares and presents measurement analysis report(s) for
scoring and/or interactive exploration
■ square = scalasca -examine
■ square [options] <experiment-archive|report>

► e.g., square epik_title
■ Post-processes intermediate measurement analysis reports
■ Launches GUI and presents default analysis report

(if multiple reports available)
► trace analysis given precedence over summary analysis
► select other reports via File/Open menu

■ [-s] skip display and produce textual score report (epik.score)
► estimates total trace size and maximum rank trace size
► breakdown of USR vs. MPI/OMP vs. COM region requirements
► add [-f test.filt] to test effect of a prospective filter file

square – Scalasca analysis report examiner

CUBE algebra utilities

● Extracting a sub-tree from an analysis report

● Calculating difference of two analysis reports

● Combining two or more related analysis reports

● Additional algebra utilities for calculating mean, etc.
■ Default output of cube3_utility is a new report utility.cube

● Further utilities for report scoring & statistics
● Run utility with “-h” (or no arguments) for brief usage info

% cube3_cut -r 'adi_' epik_bt-mz_4x4_sum/summary.cube
Writing cut.cube... done.

% cube3_diff epik_bt_9_trace/trace.cube epik_bt_16_trace/trace.cube
Writing diff.cube... done.

% cube3_merge trace/trace.cube HWC1/summary.cube HWC2/summary.cube
Writing merge.cube... done.

Tip: Merging multiple HWC analysis reports

● Example set of experiments collected with and w/o HWC

● Ensure that each is post-processed

● Merge the HWC summary reports into the non-HWC report

● Metrics are merged as they are encountered in reports
■ already defined metrics are not modified by later versions

● Since measurements with HWCs have higher overhead,
include a non-HWC measurement first

% ls -1d epik_*
epik_bt_B_16_sum_PAT_RT_HWPC_0/
epik_bt_B_16_sum_PAT_RT_HWPC_1/
epik_bt_B_16_sum_PAT_RT_HWPC_7/
epik_bt_B_16_sum_PAT_RT_HWPC_8/
epik_bt_B_16_trace/

% for epik in epik_* ; do scalasca -examine -s $epik ; done

% cube3_merge -o HWC_combo.cube \
 epik_bt_B_16_trace/trace.cube epik_bt_B_16_sum_*/summary.cube
Writing HWC_combo.cube... done.

In case of doubt, confusion or alarm

DON'T PANIC!
● Remember the Scalasca User Guide is your friend
● On the assumption that nothing terrible is going to happen,

all the advice in this tutorial may be safely ignored
● But if you need more advice, mailto:scalasca@fz-juelich.de

	Exercise title
	Analysis steps
	NPB-MZ-MPI/BT intro
	Scalasca module
	NPB PREP macro
	BT-MZ skin
	BT-MZ summary scan
	BT-MZ square
	NPB-BT initial
	NPB-BT system
	NPB-BT call-tree
	NPB-BT metrics
	NPB-BT source
	Intermezzo
	BT-MZ scoring
	BT-MZ score breakdown
	BT-MZ score analysis
	BT-MZ score filter
	BT-MZ filtered scan
	BT-MZ tuned score
	NPB-BT filtered
	BT-MZ trace collection
	BT-MZ trace analysis
	BT-MZ topology
	BT-MZ HWCs
	BT-MZ imbalance
	BT-MZ trace metrics
	Scalasca export
	Paraprof
	Vampir full
	Vampir zoom
	Paraver
	Tracing
	Information
	Scalasca recap
	skin
	SKIN config
	MPI inst
	MPI limitations
	OMP inst
	OMP limitations
	SKIN_COMP
	PDT instrumenter
	PDT example
	F77 extensions
	NPB EPIK API
	BT_epik.F
	EPIK control
	scan
	EPIK config
	NPB-BT HWC
	EPK_METRICS_SPEC
	SCAN hints
	SCAN envvars
	SCAN limitations
	square
	CUBE algebra utils
	Multi-HWC
	The Guide

