
Introduction to Performance Engineering

Markus Geimer
Jülich Supercomputing Centre

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Performance: an old problem

2

“The most constant difficulty in contriving

the engine has arisen from the desire to

reduce the time in which the calculations

were executed to the shortest which is

possible.”
Charles Babbage

1791 – 1871

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Today: the “free lunch” is over

■ Moore's law is still in charge, but

■ Clock rates no longer increase

■ Performance gains only through

increased parallelism

■ Optimizations of applications more

difficult

■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity

■ Hierarchical networks / memory

■ More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

3

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Example: XNS

■ CFD simulation of unsteady flows

■ Developed by CATS / RWTH Aachen

■ Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

■ MPI parallel version

■ >40,000 lines of Fortran & C

■ DeBakey blood-pump data set (3,714,611 elements)

4

Hæmodynamic flow

pressure distribution Partitioned finite-element mesh

XNS wait-state analysis on BG/L (2007)

5

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Performance factors of parallel applications

■ “Sequential” factors

■ Computation

Choose right algorithm, use optimizing compiler

■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right

■ Input / output

Often not given enough attention

■ “Parallel” factors

■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking

More or less understood, good tool support

6

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Tuning basics

■ Successful engineering is a combination of

■ The right algorithms and libraries

■ Compiler flags and directives

■ Thinking !!!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

After each step!

7

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

However…

■ It's easier to optimize a slow correct program than to

debug a fast incorrect one

Nobody cares how fast you can compute a wrong answer...

8

“We should forget about small efficiencies,

say 97% of the time: premature optimization

is the root of all evil.”

Charles A. R. Hoare

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Performance engineering workflow

9

■ Prepare application (with symbols),

insert extra code (probes/hooks)

■ Collection of data relevant to

execution performance analysis

■ Calculation of metrics, identification

of performance metrics

■ Presentation of results in an

intuitive/understandable form

■ Modifications intended to eliminate/reduce

performance problems

Preparation

Measurement

Analysis

Examination

Optimization

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of

the code

■ Programmers typically spend 20% of their effort to get

80% of the total speedup possible for the application

Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

10

“If you optimize everything,

you will always be unhappy.”

Donald E. Knuth

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Metrics of performance

■ What can be measured?

■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval

■ E.g., the time spent these send calls

■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics

■ E.g., rates / throughput

■ Needed for normalization

11

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Example metrics

■ Execution time

■ Number of function calls

■ CPI

■ CPU cycles per instruction

■ FLOPS

■ Floating-point operations executed per second

12

“math” Operations?

 HW Operations?

 HW Instructions?

 32-/64-bit? …

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Execution time

■ Wall-clock time

■ Includes waiting time: I/O, memory, other system activities

■ In time-sharing environments also the time consumed by other

applications

■ CPU time

■ Time spent by the CPU to execute the application

■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)

■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic

■ Use mean or minimum of several runs

13

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive

■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

14

int foo()

{

 int a;

 a = 1 + 1;

 bar();

 a = a + 1;

 return a;

}

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Classification of measurement techniques

■ How are performance measurements triggered?

■ Sampling

■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization

■ Tracing

15

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Sampling

16

■ Running program is periodically interrupted

to take measurement

■ Timer interrupt, OS signal, or HWC overflow

■ Service routine examines return-address stack

■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behaviour

■ Not very detailed information on highly

volatile metrics

■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()

{

 int i;

 for (i=0; i < 3; i++)

 foo(i);

 return 0;

}

void foo(int i)

{

 if (i > 0)

 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Instrumentation

17

Time

Measurement

■ Measurement code is inserted such that

every event of interest is captured directly

■ Can be done in various ways

■ Advantage:

■ Much more detailed information

■ Disadvantage:

■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()

{

 int i;

 for (i=0; i < 3; i++)

 foo(i);

 return 0;

}

void foo(int i)

{

 if (i > 0)

 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Instrumentation techniques

■ Static instrumentation

■ Program is instrumented prior to execution

■ Dynamic instrumentation

■ Program is instrumented at runtime

■ Code is inserted

■ Manually

■ Automatically

■ By a preprocessor / source-to-source translation tool

■ By a compiler

■ By linking against a pre-instrumented library / runtime system

■ By binary-rewrite / dynamic instrumentation tool

18

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Critical issues

■ Accuracy

■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation

■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity

■ How many measurements?

■ How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

19

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Classification of measurement techniques

■ How are performance measurements triggered?

■ Sampling

■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization

■ Tracing

20

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Profiling / Runtime summarization

■ Recording of aggregated information

■ Total, maximum, minimum, …

■ For measurements

■ Time

■ Counts

■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities

■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

Profile = summarization of events over execution interval

21

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Types of profiles

■ Flat profile

■ Shows distribution of metrics per routine / instrumented region

■ Calling context is not taken into account

■ Call-path profile

■ Shows distribution of metrics per executed call path

■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles

■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs

■ Comparing processes/threads

22

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Tracing

■ Recording information about significant points (events)

during execution of the program

■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record

■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of

 event records

23

Event tracing

void foo() {

 ...

 send(B, tag, buf);

 ...

}

Process A

void bar() {

 ...

 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

 trc_enter("bar");

 ...

 recv(A, tag, buf);

 trc_recv(A);

 ...

 trc_exit("bar");

}

void foo() {

 trc_enter("foo");

 ...

 trc_send(B);

 send(B, tag, buf);

 ...

 trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Example: Time-line visualization

25

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Tracing vs. Profiling

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships

among individual events (context)

■ Allows reconstruction of dynamic application behaviour on any

required level of abstraction

■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime causes perturbation

■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

26

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

No single solution is sufficient!

27

A combination of different methods, tools and techniques is

typically needed!

■ Analysis

■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement

■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation

■ Source code / binary, manual / automatic, ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Typical performance analysis procedure

■ Do I have a performance problem at all?

■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?

■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?

■ Call-path profiling, detailed basic block profiling

■ Why is it there?

■ Hardware counter analysis, trace selected parts to keep trace size

manageable

■ Does the code have scalability problems?

■ Load imbalance analysis, compare profiles at various sizes

function-by-function

28

Performance Analysis Tools Overview

Markus Geimer

Jülich Supercomputing Centre

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Fall-back: “Home-grown performance tool”

 Simple measurements can always be performed

 C/C++: times(), clock(), gettimeofday(), clock_gettime(),

getrusage()

 Fortran: etime, cpu_time, system_clock

 However, ...

 Use these functions rarely and only for coarse-grained timings

 Avoid do-it-yourself solutions for detailed measurements

 Use dedicated tools instead

 Typically more powerful

 Might use platform-specific timers with better resolution

and/or lower overhead

30

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

GNU gprof

■ Shows where the program spends its time

■ Indicates which functions are candidates for tuning

■ Identifies which functions are being called

■ Can be used on large and complex programs

■ Method

■ Compiler inserts code to count each function call (compile with “-pg”)

■ Shows up in profile as “__mcount”

■ Time information is gathered using sampling

■ Current function and and its parents (two levels) are determined

■ Program execution generates “gmon.out” file

■ To dump human-readable profile to stdout, call

 gprof <executable> <gmon.out file>

Slide 31

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

GNU gprof: flat profile

Slide 32

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 82.90 31.55 31.55 27648 1.14 1.14 pc_jac2d_blk3_

 7.54 34.42 2.87 1 2870.00 37910.00 cg3_blk_

 5.96 36.69 2.27 28672 0.08 0.08 matxvec2d_

 2.13 37.50 0.81 55296 0.01 0.01 dot_prod2d_

 0.87 37.83 0.33 54 6.11 6.11 add_exchange2d_

 0.34 37.96 0.13 main

 0.21 38.04 0.08 27 2.96 2.96 cs_jac2d_blk3_

...

Avg. inclusive time

Avg. exclusive time

Number of calls

Exclusive time
(sorting criterion)

Percentage of total time

Time sum

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

GNU gprof: (partial) call-path profile

Slide 33

 called/total parents
index %time self descendents called+self name index
 called/total children

 0.17 2.83 1/1 .__start [2]
[1] 99.3 0.17 2.83 1 .main [1]
 2.83 0.00 10/10 .relax [3]
 0.00 0.00 3/13 .printf [15]
 0.00 0.00 1/1 .saveOutput [27]
 0.00 0.00 2/1523 .malloc [5]
 0.00 0.00 1/1 .readInput [40]
 0.00 0.00 10/20 .update [68]

...

Parent
(Callsite)

Children
(Called functions)

Total number of calls

Number of calls
from this callsite

Exclusive time

Time spent
in children

Percentage of
total time
(sorting criterion)

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

MPI profiling: mpiP

■ Scalable, light-weight MPI profiling library

■ Generates detailed text summary of MPI behavior

■ Time spent in each MPI function call site

■ Bytes sent by each MPI function call site (if applicable)

■ MPI I/O statistics

■ Configurable traceback depth for function call sites

■ Controllable from program using MPI_Pcontrol()

■ Allows to profile just one code module or a single iteration

■ Uses standard PMPI interface: only re-linking of application

necessary

■ License: new BSD

■ Web site: http://mpip.sourceforge.net

Slide 34

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

mpiP: text output example

Slide 35

@ mpiP
@ Version: 3.1.1
// 10 lines of mpiP and experiment configuration options
// 8192 lines of task assignment to BlueGene topology information

@--- MPI Time (seconds) ---
Task AppTime MPITime MPI%
 0 37.7 25.2 66.89
// ...
8191 37.6 26 69.21
 * 3.09e+05 2.04e+05 65.88

@--- Callsites: 26 --
 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 coarsen.c 542 hypre_StructCoarsen Waitall
// 25 similiar lines

@--- Aggregate Time (top twenty, descending, milliseconds) --------
Call Site Time App% MPI% COV
Waitall 21 1.03e+08 33.27 50.49 0.11
Waitall 1 2.88e+07 9.34 14.17 0.26
// 18 similiar lines

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

mpiP: text output example (cont.)

Slide 36

@--- Aggregate Sent Message Size (top twenty, descending, bytes) --
Call Site Count Total Avrg Sent%
Isend 11 845594460 7.71e+11 912 59.92
Allreduce 10 49152 3.93e+05 8 0.00
// 6 similiar lines

@--- Callsite Time statistics (all, milliseconds): 212992 ---------
Name Site Rank Count Max Mean Min App% MPI%
Waitall 21 0 111096 275 0.1 0.000707 29.61 44.27
// ...
Waitall 21 8191 65799 882 0.24 0.000707 41.98 60.66
Waitall 21 * 577806664 882 0.178 0.000703 33.27 50.49
// 213,042 similiar lines

@--- Callsite Message Sent statistics (all, sent bytes) -----------
Name Site Rank Count Max Mean Min Sum
Isend 11 0 72917 2.621e+05 851.1 8 6.206e+07
//...
Isend 11 8191 46651 2.621e+05 1029 8 4.801e+07
Isend 11 * 845594460 2.621e+05 911.5 8 7.708e+11
// 65,550 similiar lines

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Scalasca

■ Scalable performance-analysis toolkit for parallel codes

■ Specifically targeting large-scale applications running on

10,000s to 100,000s of cores

■ Integrated performance-analysis process

■ Performance overview via call-path profiles

■ In-depth study of application behavior via event tracing

■ Automatic trace analysis identifying wait states

■ Switching between both options without re-compilation or re-linking

■ Supports MPI 2.2 and basic OpenMP

■ License: new BSD

■ Website: http://www.scalasca.org

Slide 37

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Scalasca Sweep3D trace analysis on

BG/P @ 288k CPUs

Slide 38

More after the coffee break …

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

VampirTrace / Vampir

■ VampirTrace

■ Tool set and runtime library to generate OTF traces

■ Supports MPI, OpenMP, POSIX threads, Java, CUDA, ...

■ Also distributed as part of Open MPI since v1.3

■ License: new BSD

■ Web site: http://www.tu-dresden.de/zih/vampirtrace

■ Vampir / VampirServer

■ Interactive trace visualizer with powerful statistics

■ License: commercial

■ Web site: http://www.vampir.eu

Slide 39

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Vampir displays overview

Slide 40

More after the lunch break …

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

TAU Performance System

■ Very portable tool set for instrumentation, measurement

and analysis of parallel applications

■ The “swiss army knife” of performance analysis

■ Instrumentation API supports choice

■ between profiling and tracing

■ of metrics (e.g., time, HW counter, ...)

■ Supports

■ C, C++, Fortran, HPF, HPC++, Java, Python

■ MPI, OpenMP, POSIX threads, Java, Win32, ...

■ License: Open-source (historical permission notice and disclaimer)

■ Web site: http://tau.uoregon.edu

Slide 41

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

TAU components

Slide 42

SC ’10: Hands-on Practical Parallel Application Performance Engineering

42

TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T

P
erfD

M
F

P

a
ra

P
ro

f

Performance Data Mining

Performance Monitoring

T
A

U
o
v

erS
u

p
erm

o
n

PerfExplorer

More tomorrow …

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Other open-source tools worth mentioning

■ Open|SpeedShop

■ Modular and extensible performance analysis tool set

■ Web site: http://www.openspeedshop.org

■ HPCToolkit

■ Multi-platform statistical profiling package

■ Web site: http://hpctoolkit.org

■ Paraver

■ Trace-based performance-analysis and visualization framework

■ Web site: http://www.bsc.es/paraver

■ PerfSuite, Periscope, IPM, ...

Slide 43

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Commercial / vendor-specific tools

■ Intel VTune (serial/multi-threaded)

■ Intel Trace Analyzer and Collector (MPI)

■ Cray Performance Toolkit: CrayPat / Apprentice2

■ IBM HPC Toolkit

■ Oracle Performance Analyzer

■ Acumem ThreadSpotter

■ ...

Slide 44

