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Performance: an old problem 
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“The most constant difficulty in contriving 

the engine has arisen from the desire to 

reduce the time in which the calculations 

were executed to the shortest which is 

possible.” 
Charles Babbage 

1791 – 1871    
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Today: the “free lunch” is over 

■ Moore's law is still in charge, but 

■ Clock rates no longer increase 

■ Performance gains only through 

increased parallelism 

■ Optimizations of applications more 

difficult 

■ Increasing application complexity 

■ Multi-physics 

■ Multi-scale 

■ Increasing machine complexity 

■ Hierarchical networks / memory 

■ More CPUs / multi-core 

Every doubling of scale reveals a new bottleneck! 
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Example: XNS 

■ CFD simulation of unsteady flows 

■ Developed by CATS / RWTH Aachen 

■ Exploits finite-element techniques, unstructured 3D meshes, 

iterative solution strategies 

■ MPI parallel version 

■ >40,000 lines of Fortran & C 

■ DeBakey blood-pump data set (3,714,611 elements) 
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Hæmodynamic flow 

pressure distribution Partitioned finite-element mesh 



XNS wait-state analysis on BG/L (2007) 
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Performance factors of parallel applications 

■ “Sequential” factors 

■ Computation 

Choose right algorithm, use optimizing compiler 

■ Cache and memory 

Tough! Only limited tool support, hope compiler gets it right 

■ Input / output 

Often not given enough attention 

 

■ “Parallel” factors 

■ Partitioning / decomposition 

■ Communication (i.e., message passing) 

■ Multithreading 

■ Synchronization / locking 

More or less understood, good tool support 
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Tuning basics 

■ Successful engineering is a combination of 

■ The right algorithms and libraries 

■ Compiler flags and directives 

■ Thinking !!! 

■ Measurement is better than guessing 

■ To determine performance bottlenecks 

■ To compare alternatives 

■ To validate tuning decisions and optimizations 

After each step! 

7 



CSCS Summer School in Parallel Programming & Scalable Performance Analysis 

However… 

■ It's easier to optimize a slow correct program than to 

debug a fast incorrect one 

Nobody cares how fast you can compute a wrong answer... 
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“We should forget about small efficiencies, 

say 97% of the time: premature optimization 

is the root of all evil.” 
 

Charles A. R. Hoare 
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Performance engineering workflow 
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■ Prepare application (with symbols), 

insert extra code (probes/hooks) 

■ Collection of data relevant to 

execution performance analysis 

■ Calculation of metrics, identification 

of performance metrics 

■ Presentation of results in an 

intuitive/understandable form 

■ Modifications intended to eliminate/reduce 

performance problems 

Preparation 

Measurement 

Analysis 

Examination 

Optimization 
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The 80/20 rule 

■ Programs typically spend 80% of their time in 20% of 

the code 

■ Programmers typically spend 20% of their effort to get 

80% of the total speedup possible for the application 

Know when to stop! 

 

■ Don't optimize what does not matter 

Make the common case fast! 
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“If you optimize everything, 

you will always be unhappy.” 
 

Donald E. Knuth 
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Metrics of performance 

■ What can be measured? 

■ A count of how often an event occurs 

■ E.g., the number of MPI point-to-point messages sent 

■ The duration of some interval 

■ E.g., the time spent these send calls 

■ The size of some parameter 

■ E.g., the number of bytes transmitted by these calls 

 

■ Derived metrics 

■ E.g., rates / throughput 

■ Needed for normalization 
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Example metrics 

■ Execution time 

■ Number of function calls 

■ CPI 

■ CPU cycles per instruction 

■ FLOPS 

■ Floating-point operations executed per second 
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“math” Operations? 

   HW Operations? 

      HW Instructions? 

            32-/64-bit? … 
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Execution time 

■ Wall-clock time 

■ Includes waiting time: I/O, memory, other system activities 

■ In time-sharing environments also the time consumed by other 

applications 

■ CPU time 

■ Time spent by the CPU to execute the application 

■ Does not include time the program was context-switched out 

■ Problem: Does not include inherent waiting time (e.g., I/O) 

■ Problem: Portability? What is user, what is system time? 

 

■ Problem: Execution time is non-deterministic 

■ Use mean or minimum of several runs 
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■ Inclusive 

■ Information of all sub-elements aggregated into single value 

■ Exclusive 

■ Information cannot be subdivided further 

Inclusive 

Inclusive vs. Exclusive values 

Exclusive 
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int foo()  

{ 

  int a; 

  a = 1 + 1; 

 

  bar(); 

 

  a = a + 1; 

  return a; 

} 
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Classification of measurement techniques 

■ How are performance measurements triggered? 

■ Sampling 

■ Code instrumentation 

 

■ How is performance data recorded? 

■ Profiling / Runtime summarization 

■ Tracing 
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Sampling 
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■ Running program is periodically interrupted 

to take measurement 

■ Timer interrupt, OS signal, or HWC overflow 

■ Service routine examines return-address stack 

■ Addresses are mapped to routines using 

symbol table information 

■ Statistical inference of program behaviour 

■ Not very detailed information on highly 

volatile metrics 

■ Requires long-running applications 

■ Works with unmodified executables 

Time 

main foo(0) foo(1) foo(2) 

int main() 

{ 

  int i; 

 

  for (i=0; i < 3; i++) 

    foo(i); 

 

  return 0; 

} 

 

void foo(int i) 

{ 

 

  if (i > 0) 

    foo(i – 1); 

 

} 

Measurement 
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Instrumentation 
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Time 

Measurement 

■ Measurement code is inserted such that 

every event of interest is captured directly 

■ Can be done in various ways 

■ Advantage: 

■ Much more detailed information 

■ Disadvantage: 

■ Processing of source-code / executable 

necessary 

■ Large relative overheads for small functions 

int main() 

{ 

  int i; 

 

  for (i=0; i < 3; i++) 

    foo(i); 

 

  return 0; 

} 

 

void foo(int i) 

{ 

 

  if (i > 0) 

    foo(i – 1); 

 

} 

Time 
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main foo(0) foo(1) foo(2) 

Enter(“main”); 

Leave(“main”); 

Enter(“foo”); 

Leave(“foo”); 
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Instrumentation techniques 

■ Static instrumentation 

■ Program is instrumented prior to execution 

■ Dynamic instrumentation 

■ Program is instrumented at runtime 
 

■ Code is inserted 

■ Manually 

■ Automatically 

■ By a preprocessor / source-to-source translation tool 

■ By a compiler 

■ By linking against a pre-instrumented library / runtime system 

■ By binary-rewrite / dynamic instrumentation tool 
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Critical issues 

■ Accuracy 

■ Intrusion overhead 

■ Measurement itself needs time and thus lowers performance 

■ Perturbation 

■ Measurement alters program behaviour 

■ E.g., memory access pattern 

■ Accuracy of timers & counters 

■ Granularity 

■ How many measurements? 

■ How much information / processing during each measurement? 

 

Tradeoff: Accuracy vs. Expressiveness of data 
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Classification of measurement techniques 

■ How are performance measurements triggered? 

■ Sampling 

■ Code instrumentation 

 

■ How is performance data recorded? 

■ Profiling / Runtime summarization 

■ Tracing 
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Profiling / Runtime summarization 

■ Recording of aggregated information 

■ Total, maximum, minimum, … 

■ For measurements 

■ Time 

■ Counts 

■ Function calls 

■ Bytes transferred 

■ Hardware counters 

■ Over program and system entities 

■ Functions, call sites, basic blocks, loops, … 

■ Processes, threads 

 

Profile = summarization of events over execution interval 
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Types of profiles 

■ Flat profile 

■ Shows distribution of metrics per routine / instrumented region 

■ Calling context is not taken into account 

■ Call-path profile 

■ Shows distribution of metrics per executed call path 

■ Sometimes only distinguished by partial calling context 

(e.g., two levels) 

■ Special-purpose profiles 

■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs 

■ Comparing processes/threads 
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Tracing 

■ Recording information about significant points (events) 

during execution of the program 

■ Enter / leave of a region (function, loop, …) 

■ Send / receive a message, … 

■ Save information in event record 

■ Timestamp, location, event type 

■ Plus event-specific information (e.g., communicator, 

sender / receiver, …) 

■ Abstract execution model on level of defined events 

 

Event trace = Chronologically ordered sequence of 

   event records 
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Event tracing 

void foo() { 

   

  ... 

   

  send(B, tag, buf); 

  ... 

   

} 

Process A 

void bar()  { 

   

  ... 

  recv(A, tag, buf); 

   

  ... 

   

} 

Process B 

MONITOR 

MONITOR 

s
y
n

c
h

ro
n

iz
e

(d
) 

void bar() { 

  trc_enter("bar"); 

  ... 

  recv(A, tag, buf); 

  trc_recv(A); 

  ... 

  trc_exit("bar"); 

} 

void foo() { 

  trc_enter("foo"); 

  ... 

  trc_send(B); 

  send(B, tag, buf); 

  ... 

  trc_exit("foo"); 

} 

instrument 

Global trace  

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

merge 

unify 

1 foo 

2 bar 

... 

58 ENTER 1 

62 SEND B 

64 EXIT 1 

... 

... 

Local trace A 

Local trace B 

foo 1 

... 

bar 1 

... 

60 ENTER 1 

68 RECV A 

69 EXIT 1 

... 

... 
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Example: Time-line visualization 
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1 foo 

2 bar 

3 ... 

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

main 

foo 

bar 

58 60 62 64 66 68 70 

B 

A 
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Tracing vs. Profiling 

■ Tracing advantages 

■ Event traces preserve the temporal and spatial relationships 

among individual events ( context) 

■ Allows reconstruction of dynamic application behaviour on any 

required level of abstraction 

■ Most general measurement technique 

■ Profile data can be reconstructed from event traces 

■ Disadvantages 

■ Traces can very quickly become extremely large 

■ Writing events to file at runtime causes perturbation 

■ Writing tracing software is complicated 

■ Event buffering, clock synchronization, ... 

26 
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No single solution is sufficient! 

27 

A combination of different methods, tools and techniques is 

typically needed! 

■ Analysis 

■ Statistics, visualization, automatic analysis, data mining, ... 

■ Measurement 

■ Sampling / instrumentation, profiling / tracing, ... 

■ Instrumentation 

■ Source code / binary, manual / automatic, ... 
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Typical performance analysis procedure 

■ Do I have a performance problem at all? 

■ Time / speedup / scalability measurements 

■ What is the key bottleneck (computation / communication)? 

■ MPI / OpenMP / flat profiling 

■ Where is the key bottleneck? 

■ Call-path profiling, detailed basic block profiling 

■ Why is it there? 

■ Hardware counter analysis, trace selected parts to keep trace size 

manageable 

■ Does the code have scalability problems? 

■ Load imbalance analysis, compare profiles at various sizes 

function-by-function 
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Performance Analysis Tools Overview 

Markus Geimer 

Jülich Supercomputing Centre 
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Fall-back: “Home-grown performance tool” 

 Simple measurements can always be performed 

 C/C++: times(), clock(), gettimeofday(), clock_gettime(), 

getrusage() 

 Fortran: etime, cpu_time, system_clock 

 However, ... 

 Use these functions rarely and only for coarse-grained timings 

 Avoid do-it-yourself solutions for detailed measurements 

 Use dedicated tools instead 

 Typically more powerful 

 Might use platform-specific timers with better resolution 

and/or lower overhead 
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GNU gprof 

■ Shows where the program spends its time 

■ Indicates which functions are candidates for tuning 

■ Identifies which functions are being called 

■ Can be used on large and complex programs 

■ Method 

■ Compiler inserts code to count each function call (compile with “-pg”) 

■ Shows up in profile as “__mcount” 

■ Time information is gathered using sampling 

■ Current function and and its parents (two levels) are determined 

■ Program execution generates “gmon.out” file 

■ To dump human-readable profile to stdout, call 
 

  gprof <executable> <gmon.out file> 

Slide 31 
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GNU gprof: flat profile 

Slide 32 

Each sample counts as 0.01 seconds. 

  %   cumulative   self            self     total 

 time   seconds   seconds  calls  ms/call  ms/call  name 

 82.90     31.55    31.55  27648     1.14     1.14  pc_jac2d_blk3_ 

  7.54     34.42     2.87      1  2870.00 37910.00  cg3_blk_ 

  5.96     36.69     2.27  28672     0.08     0.08  matxvec2d_ 

  2.13     37.50     0.81  55296     0.01     0.01  dot_prod2d_ 

  0.87     37.83     0.33     54     6.11     6.11  add_exchange2d_ 

  0.34     37.96     0.13                           main 

  0.21     38.04     0.08     27     2.96     2.96  cs_jac2d_blk3_ 

... 

Avg. inclusive time 

Avg. exclusive time 

Number of calls 

Exclusive time 
(sorting criterion) 

Percentage of total time 

Time sum 
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GNU gprof: (partial) call-path profile 

Slide 33 

 
                                 called/total    parents 
index %time  self descendents  called+self   name           index 
                                 called/total    children 
 
             0.17        2.83       1/1          .__start [2] 
[1]    99.3  0.17        2.83       1        .main [1] 
             2.83        0.00      10/10         .relax [3] 
             0.00        0.00       3/13         .printf [15] 
             0.00        0.00       1/1          .saveOutput [27] 
             0.00        0.00       2/1523       .malloc [5] 
             0.00        0.00       1/1          .readInput [40] 
             0.00        0.00      10/20         .update [68] 
 
... 

Parent 
(Callsite) 

Children 
(Called functions) 

Total number of calls 

Number of calls 
from this callsite 

Exclusive time 

Time spent 
in children 

Percentage of 
total time 
(sorting criterion) 
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MPI profiling: mpiP 

■ Scalable, light-weight MPI profiling library 

■ Generates detailed text summary of MPI behavior 

■ Time spent in each MPI function call site 

■ Bytes sent by each MPI function call site (if applicable) 

■ MPI I/O statistics 

■ Configurable traceback depth for function call sites 

■ Controllable from program using MPI_Pcontrol() 

■ Allows to profile just one code module or a single iteration 

■ Uses standard PMPI interface: only re-linking of application 

necessary 

■ License: new BSD 

■ Web site: http://mpip.sourceforge.net 

Slide 34 
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mpiP: text output example 

Slide 35 

 
@ mpiP 
@ Version: 3.1.1 
// 10 lines of mpiP and experiment configuration options 
// 8192 lines of task assignment to BlueGene topology information 
 
@--- MPI Time (seconds) ------------------------------------------- 
Task    AppTime    MPITime     MPI% 
   0       37.7       25.2    66.89 
// ... 
8191       37.6         26    69.21 
   *   3.09e+05   2.04e+05    65.88 
 
@--- Callsites: 26 ------------------------------------------------ 
 ID Lev File/Address     Line Parent_Funct             MPI_Call 
  1   0 coarsen.c         542 hypre_StructCoarsen      Waitall 
// 25 similiar lines 
 
@--- Aggregate Time (top twenty, descending, milliseconds) -------- 
Call                 Site       Time    App%    MPI%     COV 
Waitall                21   1.03e+08   33.27   50.49    0.11 
Waitall                 1   2.88e+07    9.34   14.17    0.26 
// 18 similiar lines 
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mpiP: text output example (cont.) 

Slide 36 

 
@--- Aggregate Sent Message Size (top twenty, descending, bytes) -- 
Call                 Site      Count      Total       Avrg  Sent% 
Isend                  11  845594460   7.71e+11        912  59.92 
Allreduce              10      49152   3.93e+05          8   0.00 
// 6 similiar lines 
 
@--- Callsite Time statistics (all, milliseconds): 212992 --------- 
Name       Site Rank     Count    Max   Mean      Min   App%   MPI% 
Waitall      21    0    111096    275    0.1 0.000707  29.61  44.27 
//  ... 
Waitall      21 8191     65799    882   0.24 0.000707  41.98  60.66 
Waitall      21    * 577806664    882  0.178 0.000703  33.27  50.49 
// 213,042 similiar lines 
 
@--- Callsite Message Sent statistics (all, sent bytes) ----------- 
Name       Site Rank     Count       Max      Mean   Min        Sum 
Isend        11    0     72917 2.621e+05     851.1     8  6.206e+07 
//... 
Isend        11 8191     46651 2.621e+05      1029     8  4.801e+07 
Isend        11    * 845594460 2.621e+05     911.5     8  7.708e+11 
// 65,550 similiar lines 
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Scalasca 

■ Scalable performance-analysis toolkit for parallel codes 

■ Specifically targeting large-scale applications running on 

10,000s to 100,000s of cores 

■ Integrated performance-analysis process 

■ Performance overview via call-path profiles 

■ In-depth study of application behavior via event tracing 

■ Automatic trace analysis identifying wait states 

■ Switching between both options without re-compilation or re-linking 

■ Supports MPI 2.2 and basic OpenMP 

■ License: new BSD 

■ Website: http://www.scalasca.org 

Slide 37 
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Scalasca Sweep3D trace analysis on 

BG/P @ 288k CPUs 

Slide 38 

More after the coffee break … 



CSCS Summer School in Parallel Programming & Scalable Performance Analysis 

VampirTrace / Vampir 

■ VampirTrace 

■ Tool set and runtime library to generate OTF traces 

■ Supports MPI, OpenMP, POSIX threads, Java, CUDA, ... 

■ Also distributed as part of Open MPI since v1.3 

■ License: new BSD 

■ Web site: http://www.tu-dresden.de/zih/vampirtrace 

  

■ Vampir / VampirServer 

■ Interactive trace visualizer with powerful statistics 

■ License: commercial 

■ Web site: http://www.vampir.eu 

Slide 39 
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Vampir displays overview 

Slide 40 

More after the lunch break … 
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TAU Performance System 

■ Very portable tool set for instrumentation, measurement 

and analysis of parallel applications 

■ The “swiss army knife” of performance analysis 

■ Instrumentation API supports choice 

■ between profiling and tracing 

■ of metrics (e.g., time, HW counter, ...) 

■ Supports 

■ C, C++, Fortran, HPF, HPC++, Java, Python 

■ MPI, OpenMP, POSIX threads, Java, Win32, ... 

■ License: Open-source (historical permission notice and disclaimer) 

■ Web site: http://tau.uoregon.edu 

Slide 41 
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TAU components 

Slide 42 

SC ’10: Hands-on Practical Parallel Application Performance Engineering 
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TAU Architecture Program Analysis 

Parallel Profile Analysis 

P
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Performance Data Mining 

Performance Monitoring 

T
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PerfExplorer 

More tomorrow … 
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Other open-source tools worth mentioning 

■ Open|SpeedShop 

■ Modular and extensible performance analysis tool set 

■ Web site: http://www.openspeedshop.org 

■ HPCToolkit 

■ Multi-platform statistical profiling package 

■ Web site: http://hpctoolkit.org 

■ Paraver 

■ Trace-based performance-analysis and visualization framework 

■ Web site: http://www.bsc.es/paraver 

■ PerfSuite, Periscope, IPM, ... 

Slide 43 
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Commercial / vendor-specific tools 

■ Intel VTune (serial/multi-threaded) 

■ Intel Trace Analyzer and Collector (MPI) 

■ Cray Performance Toolkit: CrayPat / Apprentice2 

■ IBM HPC Toolkit 

■ Oracle Performance Analyzer 

■ Acumem ThreadSpotter 

■ ... 

Slide 44 


