Virtual Institute — High Productivity Supercomputing

Introduction to Performance Engineering

Markus Geimer
Julich Supercomputing Centre

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

Barcelona
((s.,p"i'mmp.m..g . — T|_|T| TECHNSCHE e universiTE DE SR
erman Research School e Ul : Universitat Stuttgart
ool e pesiny : 9 VERSAILLES -

U L| Lawrence Livermore TECHNISCHE e JNIVERSITYof
J J LA National Laboratory S e TENNESSEE or

Performance: an old problem

AT, YT
28 ol | AN

[

jas -‘i"!‘;fll\-.L.\H-l.m 1 e

™ =L

"The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is

possible.”

Charles Babbage
1791 — 1871

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 2

Today: the “free lunch” is over

= Moore's law is still in charge, but ' ' —
= Clock rates no longer increase 109 Moores Law ,*”
= Performance gains only through
Increased parallelism ob R S
= Optimizations of applications more | — ‘i
difficult _
= Increasing application complexity ° /
= Multi-physics
= Multi-scale d /-

= Increasing machine complexity
= Hierarchical networks / memory
= More CPUs / multi-core

< Every doubling of scale reveals a new bottleneck!

1970 1980 1990 2000 2010

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 3

Example: XNS

= CFD simulation of unsteady flows
= Developed by CATS / RWTH Aachen

= EXxploits finite-element techniques, unstructured 3D meshes,
iterative solution strategies

= MPI parallel version
= >40,000 lines of Fortran & C
= DeBakey blood-pump data set (3,714,611 elements)

e Haemodynamic flow
Partitioned finite-element mesh) pressure distribution

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 4

XNS wait-state analysis on BG/L (2007)

Percentage of 1otal time (%)

100

90

80

70

60

50

40

30

20

10

]]
™ Total o
[0 Communication + Synchronization
Il Waiting time o
O Time-steps/hour R
29@/
O
15@,«*”{;
O
105 .«
O
52 .7
O
256 512 1024 2048 4096

Processes

Performance factors of parallel applications

= "Sequential” factors

= Computation
#Choose right algorithm, use optimizing compiler

= Cache and memory
% Tough! Only limited tool support, hope compiler gets it right

= Input/ output
& Often not given enough attention

= "Parallel” factors
= Partitioning / decomposition
= Communication (i.e., message passing)
= Multithreading

= Synchronization / locking
% More or less understood, good tool support

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 6

Tuning basics

= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking !l
= Measurement is better than guessing
= T0 determine performance bottlenecks
= T0 compare alternatives

= T0 validate tuning decisions and optimizations
& After each step!

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 7

However...

"We should forget about small efficiencies,
say 97% of the time: premature optimization
is the root of all evil."

Charles A. R. Hoare

= It's easier to optimize a slow correct program than to
debug a fast incorrect one
% Nobody cares how fast you can compute a wrong answetr...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 8

Performance engineering workflow

v

Preparation

l

Measurement

l

Analysis

l

Examination

l

Optimization

Prepare application (with symbols),
insert extra code (probes/hooks)

Collection of data relevant to
execution performance analysis

Calculation of metrics, identification
of performance metrics

Presentation of results in an
intuitive/understandable form

Modifications intended to eliminate/reduce
performance problems

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 9

The 80/20 rule

= Programs typically spend 80% of their time in 20% of
the code

= Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
< Know when to stop!

= Don't optimize what does not matter
& Make the common case fast!

“If you optimize everything,

you will always be unhappy.”

Donald E. Knuth

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 10

Metrics of performance

= What can be measured?

= A count of how often an event occurs
= E.g., the number of MPI point-to-point messages sent

= The duration of some interval
= E.g., the time spent these send calls

= The size of some parameter
= E.g., the number of bytes transmitted by these calls

s Derived metrics
= E.g., rates/ throughput
= Needed for normalization

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 11

Example metrics

s EXxecution time
= Number of function calls

s CPI
= CPU cycles per instruction

s FLOPS
= Floating-point operations exec.:uted per second

‘e
“math” Operations?
HW Operations?

HW Instructions?
32-/64-bit? ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 12

Execution time

= Wall-clock time
= Includes waiting time: I/0O, memory, other system activities

= In time-sharing environments also the time consumed by other
applications

s CPU time

= Time spent by the CPU to execute the application

= Does not include time the program was context-switched out
= Problem: Does not include inherent waiting time (e.g., I/O)
= Problem: Portability? What is user, what is system time?

s Problem: Execution time is non-deterministic
s Use mean or minimum of several runs

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 13

Inclusive vs. Exclusive values

= Inclusive
= Information of all sub-elements aggregated into single value

s EXxclusive
s Information cannot be subdivided further

int foo ()
- (

int a;
f*[a =1+ 1;

Inclusive < Exclusive | < bar () ;

a =a + 1;
\
{ return a;

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 14

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How Is performance data recorded?
= Profiling / Runtime summarization
= Tracing

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 15

Sampling

foo(0) foo(1)

int main ()

{

int i;

for (1=0; 1 < 3; 1i++)
foo (i) ;

return 0O;

}

void foo (int 1)

{

if (1 > 0)
foo(i - 1);

= Running program is periodically interrupted
to take measurement

= Timer interrupt, OS signal, or HWC overflow
= Service routine examines return-address stack

= Addresses are mapped to routines using
symbol table information

= Statistical inference of program behaviour

= Not very detailed information on highly
volatile metrics

= Requires long-running applications

s Works with unmodified executables

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 16

Instrumentation

— <_LO'_|-

Measurement

foo(2)

int main ()
{
int 1i;
Enter (“main”) ;
for (i=0; i < 3; 1i++)
foo(i);
Leave (“main”) ;
return 0;

}

void foo(int 1)
{
Enter (“foo”) ;
if (1 > 0)
foo(i - 1);
Leave (“fo0”) ;

}

= Measurement code is inserted such that
every event of interest is captured directly

= Can be done in various ways

= Advantage:

= Much more detailed information

= Disadvantage:

= Processing of source-code / executable
necessary

= Large relative overheads for small functions

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 17

Instrumentation techniques

= Static instrumentation
= Program is instrumented prior to execution

= Dynamic instrumentation
= Program is instrumented at runtime

s Code is inserted
= Manually

= Automatically
= By a preprocessor / source-to-source translation tool
= By a compiler
= By linking against a pre-instrumented library / runtime system
= By binary-rewrite / dynamic instrumentation tool

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 18

Critical issues

= Accuracy

= Intrusion overhead
= Measurement itself needs time and thus lowers performance

= Perturbation
= Measurement alters program behaviour
= E.g., memory access pattern

= Accuracy of timers & counters

= Granularity
= How many measurements?
= How much information / processing during each measurement?

= Tradeoff: Accuracy vs. Expressiveness of data

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 19

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How Is performance data recorded?
= Profiling / Runtime summarization
= Tracing

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 20

Profiling / Runtime summarization

= Recording of aggregated information
= lotal, maximum, minimum, ...

= FOr measurements
s lIme

= Counts
= Function calls
= Bytes transferred
= Hardware counters

= Over program and system entities
= Functions, call sites, basic blocks, loops, ...
= Processes, threads

= Proflle = summarization of events over execution interval

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 21

Types of profiles

= Flat profile
= Shows distribution of metrics per routine / instrumented region
= Calling context is not taken into account

= Call-path profile

= Shows distribution of metrics per executed call path

= Sometimes only distinguished by partial calling context
(e.g., two levels)

= Special-purpose profiles
= Focus on specific aspects, e.g., MPI calls or OpenMP constructs
= Comparing processes/threads

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 22

Tracing

= Recording information about significant points (events)
during execution of the program
= Enter/leave of a region (function, loop, ...)
= Send/receive a message, ...
= Save information in event record
= Timestamp, location, event type

= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

s Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
event records

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 23

Event tracing

Process A

void foo() {
trc_enter("foo");

trc_send(B);
send(B, tag, buf);

trc_exit("foo");

}

MONITOR

instrument

Process B

void bar() {
trc_enter("bar");

recv(A, tag, buf);
trc_recv(A);

trc_exit("bar");

}

Local trace A

MONITOR

Global trace
58 | ENTER
62| SEND 58| A | ENTER | 1
64 | EXIT 60| B | ENTER | 2
62| A|SEND |B
1 | foo 64| A | EXIT 1
68| B |RECV | A
Local trace B il SR Sl -
60 | ENTER Tmerge
68 | RECV unify
\ 4
69 | EXIT 1 o0
2 | bar
1 | bar

Example: Time-line visualization

1 | foo

2 | bar

3
58| AJENTER | 1
60| B | ENTER | 2
62| A | SEND B
64| A | EXIT 1
68| B | RECV A
69| B | EXIT 2

58 60 62 64 66 68 70

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

A 4

25

Tracing vs. Profiling

= Tracing advantages

= Eventtraces preserve the temporal and spatial relationships
among individual events (¢ context)

= Allows reconstruction of dynamic application behaviour on any
required level of abstraction

= Most general measurement technique
s Profile data can be reconstructed from event traces

= Disadvantages
= Traces can very quickly become extremely large

= Writing events to file at runtime causes perturbation

= Writing tracing software is complicated
= Event buffering, clock synchronization, ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 26

No single solution is sufficient!

< A combination of different methods, tools and techniques is
typically needed!

= Analysis
= Statistics, visualization, automatic analysis, data mining, ...

= Measurement
= Sampling / instrumentation, profiling / tracing, ...

= Instrumentation
= Source code / binary, manual / automatic, ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 27

Typical performance analysis procedure

= Do | have a performance problem at all?
= Time / speedup / scalability measurements

= What is the key bottleneck (computation / communication)?
= MPI/OpenMP / flat profiling

= Where is the key bottleneck?
= Call-path profiling, detailed basic block profiling
= Why is it there?

= Hardware counter analysis, trace selected parts to keep trace size
manageable

= Does the code have scalability problems?

= Load imbalance analysis, compare profiles at various sizes
function-by-function

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 28

Virtual Institute — High Productivity Supercomputing

Performance Analysis Tools Overview

Markus Geimer
Julich Supercomputing Centre

Barcelona g 6
b e TECHNISCHE : uNiversiTE DE VA
Center erman Research School TEcwascHE, UNIVERSITAT i Universitat Stuttgart VERSAILLES ==

Contro Nacional do Supercomputaciin MOUNCHEN

SSSSS ~QUENTIN-EN-YVELINES

[4 U Lawrence Livermore @ TECHNISCHE 0 = o niUNIVERSIT Yof
J ’J h National Laboratory ggIEVSEDRESP:TAT IIIIIIIIII F OREGON TENNESSEE UI'

Fall-back: “Home-grown performance tool”

= Simple measurements can always be performed

= C/C++: times(), clock(), gettimeofday(), clock_gettime(),
getrusage()

= Fortran: etime, cpu_time, system_clock

= However, ...
= Use these functions rarely and only for coarse-grained timings
= Avoid do-it-yourself solutions for detailed measurements
= Use dedicated tools instead
= Typically more powerful

= Might use platform-specific timers with better resolution
and/or lower overhead

CSCS Summer School in Parallel Programming & Scalable Performance Analysis 30

GNU gprof

= Shows where the program spends its time

= Indicates which functions are candidates for tuning
= ldentifies which functions are being called
= Can be used on large and complex programs

= Method
= Compiler inserts code to count each function call (compile with “-pg”)
= Shows up in profile as “ _mcount”

= Time information is gathered using sampling
= Current function and and its parents (two levels) are determined

= Program execution generates “gmon.out” file
= To dump human-readable profile to stdout, call

gprof <executable> <gmon.out file>

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 31

GNU gprof: flat profile

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

82.90 31.55 31.55 27648 1.14 1.14 pc jac2d blk3
7.54 34.42 2.87 1 2870.00 37910.00 cg3 blk
5.96 36.69 2.27 28672 0.08 0.08 matxvec2d
2.13 37.50 0.81 55296 0.01 0.01 dot prod2d
0.87 37.83 0.33 54 6.11 6.11 add exchange2d
0.34 37.96 0.13 main
0.21 38.04 0.08 27 2.96 2.96 cs jac2d blk3
A A A A A A

— Avg. inclusive time

Avg. exclusive time

Number of calls

Exclusive time
(sorting criterion)

Time sum

Percentage of total time

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 32

GNU gprof: (partial) call-path profile

called/total parents
index %time self descendents called+self name index
called/total children
0.17 2.83 1/1 . _start [2l
[1] 99.3 0.17 2.83 1 .main [1]
A 2.83 0.00 10/10 .relax [3]
0.00 0.00 3/13 .printf [15] <€——
0.00 0.00 1/1 .saveOutput [27]
0.00 0.00 2/1523 .malloc [5]
0.00 0.00 1/1 .readInput [40]
0.00 0.00 10/20 .update [68]
A A r oA
=

Percentage of cal OI]SZhiI(_dren]
total time — (Called functions)

(sorting criterion) Numbe.r of Cal_ls
from this callsite

Parent
(Callsite)

Exclusive time | Total number of calls

Time spent —
in children

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 33

MPI profiling: mpiP

Scalable, light-weight MPI profiling library

Generates detailed text summary of MPI behavior

= Time spent in each MPI function call site
= Bytes sent by each MPI function call site (if applicable)
= MPI I/O statistics

= Configurable traceback depth for function call sites

Controllable from program using MPI_Pcontrol()

= Allows to profile just one code module or a single iteration

Uses standard PMPI interface: only re-linking of application
necessary

License: new BSD

Web site: http://mpip.sourceforge.net

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 34

mpiP: text output example

@ mpiP

@ Version: 3.1.1

// 10 lines of mpiP and experiment configuration options

// 8192 lines of task assignment to BlueGene topology information

@--- MPI Time (seconds) —————————-————-—————————————————————————————
Task AppTime MPITime MPTI%
0 37.7 25.2 66.89
/] ...
8191 37.6 26 69.21
* 3.09e+05 2.04e+05 65.88
@--- Callsites: 26 —-—————————————————————————— -~ —————————
ID Lev File/Address Line Parent Funct MPI Call
1 0 coarsen.c 542 hypre StructCoarsen Waitall

// 25 similiar lines

@--- Aggregate Time (top twenty, descending, milliseconds) —-—-——-—-—-—-—-
Call Site Time App%s MPT% Cov
Waitall 21 1.03e+08 33.27 50.49 0.11
Waitall 1 2.88e+07 9.34 14.17 0.26

// 18 similiar lines

L~

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 35

mpiP: text output example (cont.)

@--- Aggregate Sent Message Size (top twenty, descending, bytes) --
Call Site Count Total Avrg Sent%
Isend 11 845594460 7.71le+11 912 59.92
Allreduce 10 49152 3.93e+05 8 0.00
// 6 similiar lines

@--- Callsite Time statistics (all, milliseconds): 212992 —-———————-
Name Site Rank Count Max Mean Min AppS MPI%
Waitall 21 0 111096 275 0.1 0.000707 29.61 44.27
/A

Waitall 21 8191 65799 882 0.24 0.000707 41.98 ©60.66
Waitall 21 * 577806664 882 0.178 0.000703 33.27 50.49
// 213,042 similiar lines

@--- Callsite Message Sent statistics (all, sent bytes) --————————-
Name Site Rank Count Max Mean Min Sum
Isend 11 0 72917 2.621e+05 851.1 8 6.206e+07
// ...

Isend 11 8191 46651 2.621e+05 1029 8 4.801e+07
Isend 11 * 845594460 2.621e+05 911.5 8 7.708e+11

// 65,550 similiar lines

L~

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 36

Scalasca

= Scalable performance-analysis toolkit for parallel codes

= Specifically targeting large-scale applications running on
10,000s to 100,000s of cores

= Integrated performance-analysis process

= Performance overview via call-path profiles
= In-depth study of application behavior via event tracing

= Automatic trace analysis identifying wait states

= Switching between both options without re-compilation or re-linking

= Supports MPI 2.2 and basic OpenMP
= License: new BSD

= Website: http://www.scalasca.org

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 37

Scalasca Sweep3D trace analysis on

BG/P @ 288k CPUs

Cube 3.2 Qt: epik_sweep3d_vn294912_trace/trace.cube.gz

FEile Display Topology Help
| Absolute |~ [Metric selection percent || |Peer percent v
Metric tree | | calltree | Flatview | | Systemtree | Topology0 | Topology 1
& []0.00 Time «! /[]0.00 driver (<] o
&} [2.94e7 Execution =[] 0.00 task_init |
&[] 0.00 MPI [] 0.00 MPI_Init
&[] 0.00 Synchronization &3 [] 0.00 beast_int
& [8.30 Collective L[] 0.00 MPI_Bcast
[] 563.45 Wait at Bz =+ [J 0.00 barrier_sync
[1.96 Barrier Com| L[] 0.00 MPI_Barrier
&[] 0.00 Communication 3 [] 0.00 read_input
[] 389855.18 Point-to-| [0.00 bcast_int
9.75e7 Late Send L[] 0.00 MPI_Bcast
|:||3.14e6 Late Rece [] 0.00 bcast_real
[37622.61 Collective L[] 0.00 MPI_Bcast
[7] 0.00 Early Reduc¢ I [] 0.00 decomp
[[] 0.00 Early Scan &[] 0.00 inner_auto
[] 8524.22 Late Bro £ [] 0.00 inner
[1.89e7 Wait at N| £ [J 0.00 initialize
[124.16 N x N Comg [[] 0.00 initxs
[0.00 File I/O [[] 0.00 initsnc
L [5.77e6 Init/Exit L [70.00 octant
- [l 1.53e9 Overhead [] 0.00 initgeom
~ [l 2.36e10 Visits &[] 0.00 barrier_sync
&} [] 0 Synchronizations L[] 0.00 MPI_Barrier
[] 0 Point-to-point L[] 0.00 timers
[l 884736 Collective +[] 0.00 source
&+] 0 Communications £+ [] 0.00 sweep
£ [J 0 Point-to-point [] 0.00 octant
] 2.35e9 Sends [7] 0.00 rcv_real il
L [3.53e9 Late Receivers L [70.00 MPI_Recv
(2 3.53e9 Receives [] 0.00 snd_real
£} [1.58e9 Late Senders L .|1oo.oo MPI_Send
L [7.71e8 Messages in =+ [] 0.00 global_int_sum
@ [1.06e7 Collective I L [0.00 MPI_Allreduce
&} [] 0 Bytes transferred [] 0.00 flux_err
& [] 0 Point-to-point £ [] 0.00 global_real_ma
4.51e13 Sent L] L[0.00 MPI_Allreduc
4.51e13 Received =[] 0.00 global_real_sum
=[] 0 Collective L[] 0.00 MPI_Allreduce
|: [1.81e13 Outgoing al =[] 0.00 task_end e -
[J 3.48e11 Incoming g [] 0.00 MPI_Finalize 5 =
][] 0 3 = —) 1) ‘ | K10
|/0.00 3.14e6 (2.03%) 1.55e8| |0.00 100.00 100.00 0.00 100.00 100.00
0.00 3.14e6 (100.00%) 3.14e6| [4.75 3.14e6 (2.52e7%) 17.22]
O

More after the coffee break ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 38

VampirTrace / Vampir

= VampirTrace

= Tool set and runtime library to generate OTF traces

= Supports MPI, OpenMP, POSIX threads, Java, CUDA, ...
= Also distributed as part of Open MPI since v1.3

= License: new BSD

= Web site: http://www.tu-dresden.de/zih/vampirtrace

= Vampir / VampirServer

= Interactive trace visualizer with powerful statistics

nnnnnnnn
nnnnnnnnnnnnnn
nnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnn

. .
- EEEEEEOC pEEEEEE
II ::::::::::::
. EEEEED0 COooO@EE
uuuuuuuuuuuuu

mmEED ooo oosms
nnnnnnnnnnnnnnnnn

= Web site: http://www.vampir.eu

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 39

Vampir displays overview

Vampir - [Trace View - fhome/doleschafiracefiles/feature-tracesfwr
W File Wiew Help
wWiew Chart Filter

ENWLeTIE

158G v~ || NN

-pEd-io-mem-rusage/wri. Th.ot

Function Summary

All Processes, Accumulated Exclusive Time p...

40 s

3467969 5
2.165661 5

Timeline
0s 5s 10s 15s 20 s 25s 30s 35s

Process B
Process 25
Process 42
Process 59
Process 0

1l

21 1

3 —

ad |l

5

5]

F'mr”\\

Communication Matrix View

Murmber of Messages

SOM e
oM
Function Legend Frocess Summary Context Wiew

P Epphication ® Function Summary (£ l -

B o 20 s

B o Property |\.-’a|ue |

Mo Display Function Summary

L EY Function Group MPI (6)

™ mp Accumulated Exclusive Time 748.945947 s (29.198329%)

[pHYS

B vT_ar

M wRF

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

More after the lunch break ...

Slide 40

TAU Performance System

= Very portable tool set for instrumentation, measurement
and analysis of parallel applications .

= The “swiss army knife” of performance analysi?

= Instrumentation API supports choice

= between profiling and tracing

= of metrics (e.g., time, HW counter, ...)
= Supports

= C, C++, Fortran, HPF, HPC++, Java, Python
= MPI, OpenMP, POSIX threads, Java, Win32, ...

= License: Open-source (historical permission notice and disclaimer)

= Web site: http://tau.uoregon.edu

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 41

TAU components

TAU Architecture yye

. / Library
Instrumentation Dy

Fortran parser
F77/90/95

Program
documentation

_* W Application
component glue
H o G 1 FO0/9S
interoperability

Automalic source
instrumentation

event

arser
selection p

information

7 T Fortran

Measurement i i
1L analyzer

Event creation and management
event entry/exit atomic event event
identifier events events mapping control

Profiling Tracing

- atomic entrylexit trace record
I statistics I I profiles I I profiles I Ibuffsringl I creation
phase profi timestamp
files s

samplin; eneration ﬁllcnn

Performance Analysis Programs

Tl])
raw pmﬂk\b\\\ Query and Analysis Toolkit ' [Dara Mining J

ﬂ/ ‘m\ [(Weka)
o
Statistics
mel O ‘ ‘
* mpiP

(R/ Omega)

TAU Performance System

OS and runtime system modules

I threading I I interrupts I
runtime
I DL I I - I

Performance data sources

- hardware
timing counters
system

I counters I I kernel I

profile
metadata

NG it e
psrun
* HPMroolkit Y

o L (SOL (PosareSOL, MySOL, DB2, Oracie)
dn(umsm |

| event
__ information

event
selection

JANAIRd

formatted - -
profile data

Trace Data Management

Profies |
H I:ranslators /‘ ’\ storage FTperp—

HPMToolkit, Cube,

w HPCToolkit, Gprof,
Dynaprof, PSRun
Trace Vi]
ﬂ s
o Tiieen
Vampir w Collection
; =
(=] | Supermon, MRNet
‘ JumpShot ProfileGen b

Server

‘ Paraver | Vampir

PostgresQL, MySQL |
Oracle, DB2, Derby

Scripting Interface

Jython

More tomorrow

CSCS Summer School in Parallel Programming & Scalable Performance Analysis

Performance
Data
_—
Matadata

Analysis
Rasulls

GUI Scripting Interface
PerfExplorer Component Interfaces
Analysis Components Data Components
Data Mining ‘I"Efi;ei:? PerfDMF ul - alzs en:
Weka im;: Dr:"a letad:

erformance Data Minin

~ PerfExplorer

Analysis Components 3

uouLRdNGIA0N V],

—

1

s

erformanc

e Monltorln S\

Compute Node

Instrumentest
applcation code
all it TAU.

Appllmlnn

Slide 42

Other open-source tools worth mentioning

= Open|SpeedShop
= Modular and extensible performance analysis tool set
= Web site: http://www.openspeedshop.org
= HPCToolkit
= Multi-platform statistical profiling package
= Web site: http://hpctoolkit.org
= Paraver
= Trace-based performance-analysis and visualization framework
= Web site: http://www.bsc.es/paraver

= PerfSuite, Periscope, IPM, ...

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 43

Commercial / vendor-specific tools

= Intel VTune (serial/multi-threaded)

= Intel Trace Analyzer and Collector (MPI)

= Cray Performance Toolkit: CrayPat / Apprentice2
= IBM HPC Toolkit

= Oracle Performance Analyzer

= Acumem ThreadSpotter

CSCS Summer School in Parallel Programming & Scalable Performance Analysis Slide 44

