
VAMPIR & VAMPIRTRACE
DETAILS AND HANDS-ON

Matthias Weber,
Jens Doleschal, Andreas Knüpfer

ZIH, TU Dresden
matthias.weber@tu-dresden.de

November 2010

2

Overview

•  Event Tracing in General
•  Hands-on: NPB 3.3 BT-MPI
•  Finding Performance Bottlenecks

3

VAMPIR & VAMPIRTRACE
Event Tracing in General

4

Usage order of the Vampir Performance
Analysis Toolset

1.  Instrument your application with VampirTrace

2.  Run your application with an appropriate test set

3.  Analyze your trace file with Vampir

•  Small trace files can be analyzed on your local workstation
1.  Start your local Vampir
2.  Load trace file from your local disk

•  Large trace files should be stored on the cluster file system
1.  Start VampirServer on your analysis cluster
2.  Start your local Vampir
3.  Connect local Vampir with the VampirServer on the analysis cluster
4.  Load trace file from the cluster file system

5

Profiling and Tracing

•  Tracing Advantages
–  Preserve temporal and spatial relationships
–  Allow reconstruction of dynamic behavior on any required

abstraction level
–  Profiles can be calculated from traces

•  Tracing Disadvantages
–  Traces can become very large
–  May cause perturbation
–  Instrumentation and tracing is complicated

•  Event buffering, clock synchronization, …

6

Common Event Types

•  Enter/leave of function/routine/region
–  time stamp, process/thread, function ID

•  Send/receive of P2P message (MPI)
–  time stamp, sender, receiver, length, tag, communicator

•  Collective communication (MPI)
–  time stamp, process, root, communicator, # bytes

•  Hardware performance counter values
–  time stamp, process, counter ID, value

•  etc.

7

Open Trace Format (OTF)

•  Open source trace file format
•  Available at http://www.tu-dresden.de/zih/otf
•  Includes powerful libotf for reading/parsing/writing in

custom applications
•  Multi-level API:

–  High level interface for analysis tools
–  Low level interface for trace libraries

•  Actively developed by TU Dresden in cooperation with
the University of Oregon and the Lawrence Livermore
National Laboratory

8

Instrumentation

•  Instrumentation: Process of modifying programs to
detect and report events

•  There are various ways of instrumentation:
–  Manually

•  Large effort, error prone
•  Difficult to manage

–  Automatically
•  Via source to source translation
•  Via compiler instrumentation
•  Program Database Toolkit (PDT)
•  OpenMP Pragma And Region Instrumenter (Opari)

9

Source Code Instrumentation

manually or automatically

int foo(void* arg) {

 enter(7);

 if (cond) {

 leave(7);

 return 1;

 }

 leave(7);

 return 0;

}

int foo(void* arg) {

 if (cond) {

 return 1;

 }

 return 0;

}

10

Practical Instrumentation

•  Instrumentation with VampirTrace
–  Hide instrumentation in compiler wrapper
–  Use underlying compiler, add appropriate options

•  Re-compile & re-link
•  Trace run

–  User representative test input
–  Set parameters, environment variables, etc.
–  Perform trace run

•  Get Trace

CC=vtcc
CXX=vtcxx
F90=vtf90
MPICC=vtcc -vt:cc mpicc

CC=icc
CXX=icpc
F90=ifc
MPICC=mpicc

11

VAMPIR & VAMPIRTRACE
HANDS-ON: NPB 3.3 BT-MPI

12

Hands-on: NPB 3.3 BT-MPI

•  Move into tutorial directory in your home directory

•  Select the VampirTrace compiler wrappers
% gedit config/make.def
 -> comment out line 32, resulting in:

 ...
 32: #MPIF77 = mpif77
 ...

 -> remove the comment from line 38, resulting in:
 ...
 38: MPIF77 = vtf77 –vt:f77 mpif77
 ...
 -> comment out line 89, resulting in:
 ...
 89: #MPICC = mpicc
 ...

 -> remove the comment from line 95, resulting in:
 ...

 95: MPICC = vtcc -vt:cc mpicc
 ...

% cd tutorial

13

Hands-on: NPB 3.3 BT-MPI – Step 1

•  Build benchmark

•  Launch as MPI application
% cd bin.vampir; export VT_FILE_PREFIX=bt_1_initial
% mpiexec –np 16 bt_W.16

 NAS Parallel Benchmarks 3.3 -- BT Benchmark

 Size: 24x 24x 24
 Iterations: 200 dt: 0.0008000
 Number of active processes: 16

 Time step 1
 ...
 Time step 60
[0]VampirTrace: Maximum number of buffer flushes reached \
(VT_MAX_FLUSHES=1)
[0]VampirTrace: Tracing switched off permanently
 Time step 200
 ...

% make clean; make suite

14

Hands-on: NPB 3.3 BT-MPI – Step 1

•  Resulting trace files

•  Visualization with Vampir7

% ls -alh
4,1M bt_1_initial.16
3,6K bt_1_initial.16.0.def.z
3.8M bt_1_initial.16.0.marker.z
3.8M bt_1_initial.16.10.events.z
3.8M bt_1_initial.16.1.events.z
3.8M bt_1_initial.16.2.events.z
3.8M bt_1_initial.16.3.events.z
...
3.8M bt_1_initial.16.c.events.z
3.8M bt_1_initial.16.d.events.z
3.8M bt_1_initial.16.e.events.z
3.8M bt_1_initial.16.f.events.z
66 bt_1_initial.16.otf

% vampir bt_1_initial.16.otf

15

Hands-on: NPB 3.3 BT-MPI – Step 1

On LiveDVD (running in VM)

16

Hands-on: NPB 3.3 BT-MPI – Step 1

On LiveDVD (running in VM)

17

Issues of Hands-on – Step 1

Issue:
Tracing was switched off because the

internal trace buffer was too small

Result:

1.  Asynchronous behavior of the application due to
buffer flush of the measurement system

2.  No tracing information available after flush operation

Solutions:

1.  Increase trace buffer size

2.  Increase number of allowed buffer flushes (not recommended)

3.  Use filter mechanisms to reduce the number of recorded events

4.  Switch tracing on/off if your application works in an iterative manner
to reduce the number of recorded events

(see the VampirTrace manual for more details)

18

Hands-on: NPB 3.3 BT-MPI – Step 2

•  Decrease number of buffer flushes by increasing the
buffer size

•  Set a new file prefix

•  Launch as MPI application

•  Visualization with Vampir 7

% export VT_FILE_PREFIX=bt_2_buffer_120M

% export VT_MAX_FLUSHES=1 VT_BUFFER_SIZE=120M

% mpiexec -np 16 bt_W.16

Only for laptops with at least 2GB main memory !

Remove the old trace first !

% vampir bt_2_buffer.16.otf

19

Hands-on: NPB 3.3 BT-MPI – Step 2

On an SGI Altix4700

20

Hands-on: NPB 3.3 BT-MPI – Step 2

On an SGI Altix4700

21

Issues of Increasing the Buffer Size – Step 2

Issue:
Each function entry/exit, MPI event was recorded

Result:

Trace file becomes large even for short application runs
and may not fit into the main memory

Solutions:

1.  Use filter mechanisms to reduce the number of recorded events

2.  Switch tracing on/off if your application works in an iterative manner
to reduce the number of recorded events

(see the VampirTrace manual for more details)

22

Function Filtering

•  Filtering is one of the ways to reduce trace size
•  Environment variable VT_FILTER_SPEC

•  Filter definition file contains a list of filters

•  See also the vtfilter tool
–  can generate a customized filter file
–  can reduce the size of existing trace files

% export VT_FILTER_SPEC = /home/user/filter.spec

my_*;test_* -- 1000
debug_* -- 0
calculate -- -1
* -- 1000000

23

Switch Tracing On/Off

•  Starting and stopping of tracing should be performed with care

•  Tracing has to be activated on the same call stack level as it was
switched off to ensure the consistency of the trace file

•  Useful if your program behaves in an iterative manner or if you are
only interested in some parts of your application

•  Recompile your source code with the user macro “-DVTRACE”

#include “vt_user.h”
…
VT_OFF();
for(i=1; i < 100; i++) { do something uninteresting };
VT_ON();
…

% vtcc … -DVTRACE source_code.c …

24

Hands-on: NPB 3.3 BT-MPI – Step 3

•  Generate your filter specification and set environment

•  Set a new file prefix

•  Launch as MPI application

•  Visualization with Vampir 7

% export VT_FILE_PREFIX=bt_3_filter

% mpiexec -np 16 bt_W.16 Remove the old trace first !

% gedit filter.txt
 binvcrhs*; matvec_sub*; matmul_sub* -- 0

% export VT_FILTER_SPEC=filter.txt

% vampir bt_3_filter.16.otf

25

Hands-on: NPB 3.3 BT-MPI – Step 3

On an SGI Altix4700

26

Hands-on: NPB 3.3 BT-MPI – Step 3

On an SGI Altix4700

27

Issues of VampirTrace Hands-on – Step 3

Issue:

Runtime filtering will be called for every event

Result:

Runtime filtering may increases the runtime overhead

Solutions:

1.  Use manual source instrumentation (high effort, not recommended)

2.  Only instrument interesting source files with VampirTrace

3.  Switch tracing on/off if your application works in an iterative manner
to reduce the number of recorded events

(see the VampirTrace manual for more details)

However, these trace files include no information about the computational
performance of your application. Therefore, in the next step:

Recording of hardware performance counters

28

PAPI

•  PAPI counters can be included in traces
–  If VampirTrace was build with PAPI support
–  If PAPI is available on the platform

•  VT_METRICS specifies a list of PAPI counters

•  see also the PAPI commands papi_avail and
papi_command_line

% export VT_METRICS = PAPI_FP_OPS:PAPI_L2_TCM

29

Memory Allocation and I/O counters

•  Memory allocation counters can be recorded:
–  If VampirTrace build with memory allocation tracing support
–  If GNU glibc is used on the platform

•  intercept glibc functions like “malloc” and “free”
•  Environment variable VT_MEMTRACE

•  I/O counters can be included in traces
–  If VampirTrace was build with I/O tracing support

•  Standard I/O calls like “open” and “read” are recorded
•  Environment variable VT_IOTRACE

% export VT_MEMTRACE = yes

% export VT_IOTRACE = yes

30

Hands-on: NPB 3.3 BT-MPI – Step 4

•  Record PAPI hardware counters

•  Set a new file prefix

•  Launch as MPI application

•  Visualization with Vampir 7

% export VT_FILE_PREFIX=bt_4_papi

% papi_avail
% papi_event_chooser PRESET PAPI_FP_OPS
% export VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM

% mpiexec -np 16 bt_W.16

% vampir bt_4_papi.16.otf

Remove the old trace first !

Hands-on: NPB 3.3 BT-MPI – Step 4

On an SGI Altix4700

Vampir Trace Files: NPB 3.3 BT-MPI and
further examples

•  All NPB 3.3 BT-MPI trace files of a hands-on session are located at:

•  All NPB 3.3 BT-MPI trace files created on a SGI-Altix are located at:

•  SMG 2000 trace files with various configurations are located at:

•  Mandelbrot trace files can be found at:

% cd $HOME/workshop-vampirtrace/Examples/npb-bt-mpi/result_thinkpad

% cd $HOME/workshop-vampirtrace/Examples/npb-bt-mpi/result_altix

% cd $HOME/workshop-vampirtrace/Examples/smg2000/

% cd $HOME/workshop-vampirtrace/Examples/mandelbrot

33

Function Grouping

•  Groups can be defined for related functions
–  Groups can be assigned different colors, highlighting

different activities
•  Environment variable VT_GROUPS_SPEC

•  Group file contains a list of associated entries

% export VT_GROUPS_SPEC = /home/user/groups.spec

CALC=calculate
MISC=my*;test
UNKNOWN=*

34

VampirTrace Run-Time Options

•  control options by environment variables:

–  VT_PFORM_GDIR Directory for final trace files
–  VT_PFORM_LDIR Directory for intermediate files
–  VT_FILE_PREFIX Trace file name
–  VT_BUFFER_SIZE Internal trace buffer size
–  VT_MAX_FLUSHES Max number of buffer flushes
–  VT_MEMTRACE Enable memory allocation tracing
–  VT_MPICHECK Enable MPI checking
–  VT_IOTRACE Enable I/O tracing
–  VT_MPITRACE Enable MPI tracing
–  VT_FILTER_SPEC Name of filter definition file
–  VT_GROUPS_SPEC Name of grouping definition file
–  VT_METRICS PAPI counter selection

35

Thanks for your attention.

36

VAMPIR & VAMPIRTRACE
Finding Performance Bottlenecks

37

Finding Bottlenecks

•  Trace Visualization
–  Vampir provides a number of display types
–  Each allows many different options

•  Advice
–  Identify essential parts of an application (initialization,

main iteration, I/O, finalization)
–  Identify important components of the code (serial computation,

MPI P2P, collective MPI, OpenMP)
–  Make a hypothesis about performance problems
–  Consider application’s internal workings if known
–  Select the appropriate displays
–  Use statistic displays in conjunction with timelines

38

Finding Bottlenecks

•  Communication
•  Computation
•  Memory, I/O, etc.
•  Tracing itself

39

Bottlenecks in Communication

•  Communications as such (dominating over computation)
•  Late sender, late receiver
•  Point-to-point messages instead of collective

communication
•  Unmatched messages
•  Overcharge of MPI’s buffers
•  Bursts of large messages (bandwidth)
•  Frequent short messages (latency)
•  Unnecessary synchronization (barrier)

All of the above usually result in high MPI time share

40

Bottlenecks in Communication

Example: prevalent communication

41

Bottlenecks in Communication

prevalent communication: MPI_Allreduce

42

Bottlenecks in Communication

prevalent communication: timeline view

43

Bottlenecks in Communication

unnecessary MPI_Barriers

44

Further Bottlenecks

•  unbalanced computation
–  single late comer

•  strictly serial parts of program
–  idle processes/threads

•  very frequent tiny function calls
•  sparse loops

45

Bottlenecks in Computation

•  memory bound computation
–  inefficient L1/L2/L3 cache usage
–  TLB misses
–  detectable via HW performance counters

•  I/O bound computation
–  slow input/output
–  sequential I/O on single process
–  I/O load imbalance

•  exception handling

46

Bottlenecks in Computation

low FP rate due to heavy cache misses

47

Bottlenecks in Computation

low FP rate due to heavy FP exceptions

48

Bottlenecks in Computation

irregular slow I/O operations

49

Effects due to Tracing

•  measurement overhead
–  especially grave for tiny function calls
–  solve with selective instrumentation

•  long/frequent/asynchronous trace buffer flushes
•  too man concurrent counters

•  heisenbugs

50

Effects due to Tracing

Trace buffer flushes are explicitly marked in the trace.
It is rather harmless at the end of a trace as shown here.

51

Conclusions and Outlook

•  performance analysis very important in HPC

•  use performance analysis tools for profiling and tracing
•  do not spend effort in DIY solutions,

e.g. like printf-debugging

•  use tracing tools with some precautions
–  overhead
–  data volume

•  let us know about problems and about feature wishes
•  vampirsupport@zih.tu-dresden.de

52

Acknowledgements

•  This work would have been impossible without the
dedication of:
–  Matthias Lieber (Tracing & Analysis)
–  Matthias Jurenz (VampirTrace Software & Support)
–  Matthias Weber (Vampir Software & Support)

•  The Vampir Team:
 Matthias Jurenz, Andreas Knüpfer, Ronny Brendel, Matthias Lieber,
Jens Doleschal, Holger Mickler, Daniel Hackenberg, Michael Heyde,
Guido Juckeland, Dietrich Robert, Johannes Spazier, Michael Kluge,
Matthias Müller, Holger Brunst, Ronald Geisler, Reinhard Neumann,
Heide Rohling, Rene Widera, Thomas Ilsche, Matthias Weber,
Bert Wesarg, Hartmut Mix, Thomas William, Wolfgang E. Nagel

