
Scalable performance analysis
of large-scale parallel applications

Brian Wylie & Markus Geimer
Jülich Supercomputing Centre

scalasca@fz-juelich.de
October 2010

2

● Profile analysis
■ Summary of aggregated metrics

► per function/callpath and/or per process/thread
■ Most tools (can) generate and/or present such profiles

► but they do so in very different ways, often from event traces!
■ e.g., gprof, mpiP, ompP, Scalasca, TAU, Vampir, ...

● Time-line analysis
■ Visual representation of the space/time sequence of events
■ Requires an execution trace
■ e.g., Vampir, Paraver, JumpShot, Intel TAC, Sun Studio, ...

● Pattern analysis
■ Search for event sequences characteristic of inefficiencies
■ Can be done manually, e.g., via visual time-line analysis
■ or automatically, e.g., KOJAK, Scalasca, Periscope, ...

Performance analysis, tools & techniques

3

Automatic trace analysis

● Idea
■ Automatic search for patterns of inefficient behaviour
■ Classification of behaviour & quantification of significance

■ Guaranteed to cover the entire event trace
■ Quicker than manual/visual trace analysis
■ Parallel replay analysis exploits memory & processors

to deliver scalability

Call
path

P
ro

pe
rt

y

Location

Low-level
event trace

High-level
result

Analysis ≡

4

The Scalasca project

● Overview
■ Helmholtz Initiative & Networking Fund project started in 2006
■ Headed by Prof. Felix Wolf (JSC/RWTH/GRS-Sim)
■ Follow-up to pioneering KOJAK project (started 1998)

► Automatic pattern-based trace analysis

● Objective
■ Development of a scalable performance analysis toolset
■ Specifically targeting large-scale parallel applications

► such as those running on BlueGene/P or Cray XT
with 10,000s to 100,000s of processes

● Latest release November 2010: Scalasca v1.3.2
■ Download from www.scalasca.org
■ Available on POINT/VI-HPS Parallel Productivity Tools DVD

http://www.scalasca.org/

5

Scalasca features

● Open source, New BSD license
● Portable
■ IBM BlueGene P & L, IBM SP & blade clusters, Cray XT,

SGI Altix, NEC SX, SiCortex, Solaris & Linux clusters, ...
● Supports parallel programming paradigms & languages
■ MPI, OpenMP & hybrid OpenMP/MPI
■ Fortran, C, C++

● Integrated instrumentation, measurement & analysis toolset
■ Automatic and/or manual customizable instrumentation
■ Runtime summarization (aka profiling)
■ Automatic event trace analysis
■ Analysis report exploration & manipulation

6

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + MPI library

compiler

executable

● Application code
compiled & linked into
executable using
MPICC/CXX/FC

● Launched with
MPIEXEC

● Application processes
interact via MPI library

Generic MPI application build & run

7

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

 instrumentercompiler

instrumented executable

● Automatic/manual
code instrumenter

● Program sources
processed to add
instrumentation and
measurement library
into application
executable

● Exploits MPI standard
profiling interface
(PMPI) to acquire MPI
events

Application instrumentation

8

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

summary
analysis

 instrumentercompiler

instrumented executable expt config

● Measurement library
manages threads
& events produced
by instrumentation

● Measurements
summarized by
thread & call-path
during execution

● Analysis report unified
& collated at
finalization

● Presentation of
summary analysis

Measurement runtime summarization

analysis report examiner

9

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● During measurement
time-stamped
events buffered
for each thread

● Flushed to files along
with unified definitions
& maps at finalization

● Follow-up analysis
replays events and
produces extended
analysis report

● Presentation of
analysis report

Measurement event tracing & analysis

analysis report examiner

10

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● Automatic/manual
code instrumenter

● Measurement library
for runtime summary &
event tracing

● Parallel (and/or serial)
event trace analysis
when desired

● Analysis report
examiner for
interactive exploration
of measured execution
performance properties

Generic parallel tools architecture

analysis report examiner

11

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report examiner

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● Scalasca instrumenter
= SKIN

● Scalasca measurement
collector & analyzer
= SCAN

● Scalasca analysis
report examiner
= SQUARE

Scalasca toolset components

12

● One command for everything
% scalasca
Scalasca 1.3
Toolset for scalable performance analysis of large-scale apps
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:
 scalasca -instrument <compile-or-link-command> # skin
2. run application under control of measurement system:
 scalasca -analyze <application-launch-command> # scan
3. post-process & explore measurement analysis report:
 scalasca -examine <experiment-archive|report> # square

[-h] show quick reference guide (only)

scalasca

13

● Measurement & analysis runtime system
■ Manages runtime configuration and parallel execution
■ Configuration specified via EPIK.CONF file or environment

► epik_conf reports current measurement configuration
■ Creates experiment archive (directory): epik_<title>
■ Optional runtime summarization report
■ Optional event trace generation (for later analysis)
■ Optional filtering of (compiler instrumentation) events
■ Optional incorporation of HWC measurements with events

► via PAPI library, using PAPI preset or native counter names

● Experiment archive directory
■ Contains (single) measurement & associated files (e.g., logs)
■ Contains (subsequent) analysis reports

EPIK

14

● Automatic instrumentation of OpenMP & POMP directives
via source pre-processor
■ Parallel regions, worksharing, synchronization
■ Currently limited to OpenMP 2.5

► No special handling of guards, dynamic or nested thread teams
■ Configurable to disable instrumentation of locks, etc.
■ Typically invoked internally by instrumentation tools

● Used by Scalasca/Kojak, ompP, TAU, VampirTrace, etc.
■ Provided with Scalasca, but also available separately

► OPARI 1.1 (October 2001)
► OPARI 2.0 currently in development

OPARI

15

● Parallel program analysis report exploration tools
■ Libraries for XML report reading & writing
■ Algebra utilities for report processing
■ GUI for interactive analysis exploration

► requires Qt4 or wxGTK widgets library
► can be installed independently of Scalasca instrumenter and

measurement collector/analyzer, e.g., on laptop or desktop

● Used by Scalasca/Kojak, Marmot, ompP, PerfSuite, etc.
■ Analysis reports can also be viewed/stored/analyzed with

TAU Paraprof & PerfExplorer
■ Provided with Scalasca, but also available separately

► CUBE 3.3.1 (November 2010)

CUBE3

16

Analysis presentation and exploration

● Representation of values (severity matrix)
on three hierarchical axes
■ Performance property (metric)
■ Call-tree path (program location)
■ System location (process/thread)

● Three coupled tree browsers

● CUBE3 displays severities
■ As value: for precise comparison
■ As colour: for easy identification of hotspots
■ Inclusive value when closed & exclusive value when expanded
■ Customizable via display mode

Call
path

P
ro

pe
rt

y

Location

17

Scalasca analysis report explorer (summary)

How is it
distributed across
the processes?

What kind of
performance

problem?
Where is it in the

source code?
In what context?

18

Scalasca analysis report explorer (trace)

Additional
metrics

determined
from trace

19

● Computational astrophysics
■ (magneto-)hydrodynamic simulations on 1-, 2- & 3-D grids
■ part of SPEC MPI2007 1.0 benchmark suite (132.zeusmp2)
■ developed by UCSD/LLNL
■ >44,000 lines Fortran90 (in 106 source modules)
■ provided configuration scales to 512 MPI processes

● Run with 512 processes on JUMP
■ IBM p690+ eServer cluster with HPS at JSC

● Scalasca summary and trace measurements
■ ~5% measurement dilation (full instrumentation, no filtering)
■ 2GB trace analysis in 19 seconds
■ application's 8x8x8 grid topology automatically captured from

MPI Cartesian

ZeusMP2/JUMP case study

20

Scalasca summary analysis: zeusmp2 on jump

● 12.8% of time spent
in MPI point-to-point
communication

● 45.0% of which is
on program callpath
transprt/ct/hsmoc

● With 23.2% std dev
over 512 processes

● Lowest values in 3rd
and 4th planes of the
Cartesian grid

21

Scalasca trace analysis: zeusmp2 on jump

● MPI point-to-point
communication time
separated into
transport and Late
Sender fractions

● Late Sender
situations dominate
(57%)

● Distribution of
transport time (43%)
indicates congestion
in interior of grid

22

● Automatic function instrumentation (and filtering)
■ CCE, GCC, IBM, Intel, PathScale & PGI compilers
■ optional PDToolkit selective instrumentation (when available)

and manual instrumentation macros/pragmas/directives
● MPI measurement & analyses
■ scalable runtime summarization & event tracing
■ only requires application executable re-linking
■ P2P, collective, RMA & File I/O operation analyses

● OpenMP measurement & analysis
■ requires (automatic) application source instrumentation
■ thread management, synchronization & idleness analyses

● Hybrid OpenMP/MPI measurement & analysis
■ combined requirements/capabilities

Scalasca 1.3 functionality

23

● Improved configure/installation
● Support for using PDToolkit to instrument sources
■ selective instrumentation of source files and routines

● Consistent instrumentation selection
■ automatic (compiler/pdt) and/or manual (pomp/user)

● Measurement configuration of MPI event wrappers
■ specify desired categories of events, e.g., P2P, COLL, RMA

● MPI RMA (one-sided communication) analysis
● Improved OpenMP (and hybrid) measurement & analysis
■ specify desired number of threads: ESD_MAX_THREADS
■ consistent automatic analyses of traces

● Improved documentation of analysis reports

Scalasca 1.3 added functionality

24

● Instrumentation
■ Separate OpenMP instrumenter (OPARI) distribution
■ Scalasca source instrumentation via TAU/PDToolkit
■ Adapter for VT manual instrumentation macros
■ TAU instrumentation with Scalasca measurement libraries

● Trace utilities
■ Trace conversion utilities for VT/OTF, Paraver, JumpShot
■ Vampir visualization of Scalasca traces (without conversion)

● Analysis report utilities
■ Separate report generation/manipulation library and GUI

(CUBE3) distribution
■ Alternative presentation with TAU Paraprof/PerfExplorer

● Part of Unified Tool Environment (UNITE) bundle

Scalasca interoperability

	Scalasca intro title
	Performance analysis
	Pattern analysis
	Project overview
	Basic features
	MPI build
	MPI inst
	Summ arch
	Trace arch
	Toolset arch
	Component names
	scalasca
	EPIK
	OPARI
	CUBE3
	CUBE3 display
	Summary display
	Trace display
	zeusmp2@jump
	zeusmp2@jump.sum
	zeusmp2@jump.trace
	Scalasca 1.3
	Scalasca 1.3 new
	Interop

