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● Profile analysis
■ Summary of aggregated metrics

► per function/callpath and/or per process/thread
■ Most tools (can) generate and/or present such profiles

► but they do so in very different ways, often from event traces!
■ e.g., gprof, mpiP, ompP, Scalasca, TAU, Vampir, ...

● Time-line analysis
■ Visual representation of the space/time sequence of events
■ Requires an execution trace
■ e.g., Vampir, Paraver, JumpShot, Intel TAC, Sun Studio, ...

● Pattern analysis
■ Search for event sequences characteristic of inefficiencies
■ Can be done manually, e.g., via visual time-line analysis
■ or automatically, e.g., KOJAK, Scalasca, Periscope, ...

Performance analysis, tools & techniques
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Automatic trace analysis

● Idea
■ Automatic search for patterns of inefficient behaviour
■ Classification of behaviour & quantification of significance

■ Guaranteed to cover the entire event trace
■ Quicker than manual/visual trace analysis
■ Parallel replay analysis exploits memory & processors

to deliver scalability
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The Scalasca project

● Overview
■ Helmholtz Initiative & Networking Fund project started in 2006
■ Headed by Prof. Felix Wolf (JSC/RWTH/GRS-Sim)
■ Follow-up to pioneering KOJAK project (started 1998)

► Automatic pattern-based trace analysis

● Objective
■ Development of a scalable performance analysis toolset
■ Specifically targeting large-scale parallel applications

► such as those running on BlueGene/P or Cray XT
with 10,000s to 100,000s of processes

● Latest release November 2010: Scalasca v1.3.2
■ Download from www.scalasca.org
■ Available on POINT/VI-HPS Parallel Productivity Tools DVD

http://www.scalasca.org/
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Scalasca features

● Open source, New BSD license
● Portable
■ IBM BlueGene P & L, IBM SP & blade clusters, Cray XT,

SGI Altix, NEC SX, SiCortex, Solaris & Linux clusters, ...
● Supports parallel programming paradigms & languages
■ MPI, OpenMP & hybrid OpenMP/MPI
■ Fortran, C, C++

● Integrated instrumentation, measurement & analysis toolset
■ Automatic and/or manual customizable instrumentation
■ Runtime summarization (aka profiling)
■ Automatic event trace analysis
■ Analysis report exploration & manipulation
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + MPI library

compiler

executable

● Application code 
compiled & linked into 
executable using 
MPICC/CXX/FC

● Launched with 
MPIEXEC

● Application processes 
interact via MPI library

Generic MPI application build & run
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

      instrumentercompiler

instrumented executable

● Automatic/manual
code instrumenter 

● Program sources
processed to add 
instrumentation and 
measurement library 
into application 
executable

● Exploits MPI standard 
profiling interface 
(PMPI) to acquire MPI 
events

Application instrumentation
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

summary
analysis

      instrumentercompiler

instrumented executable expt config

● Measurement library 
manages threads
& events produced
by instrumentation

● Measurements 
summarized by
thread & call-path 
during execution

● Analysis report unified 
& collated at 
finalization

● Presentation of 
summary analysis

Measurement runtime summarization

analysis report examiner
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program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● During measurement
time-stamped
events buffered
for each thread

● Flushed to files along 
with unified definitions 
& maps at finalization

● Follow-up analysis 
replays events and 
produces extended 
analysis report

● Presentation of 
analysis report

Measurement event tracing & analysis

analysis report examiner
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program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● Automatic/manual 
code instrumenter

● Measurement library 
for runtime summary & 
event tracing

● Parallel (and/or serial)
event trace analysis 
when desired

● Analysis report 
examiner for 
interactive exploration 
of measured execution 
performance properties

Generic parallel tools architecture

analysis report examiner



11

program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report examiner

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● Scalasca instrumenter
= SKIN

● Scalasca measurement 
collector & analyzer
= SCAN

● Scalasca analysis
report examiner
= SQUARE

Scalasca toolset components
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● One command for everything
% scalasca
Scalasca 1.3
Toolset for scalable performance analysis of large-scale apps
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:
    scalasca -instrument <compile-or-link-command>    # skin
2. run application under control of measurement system:
    scalasca -analyze <application-launch-command>   # scan
3. post-process & explore measurement analysis report:
    scalasca -examine <experiment-archive|report>       # square

[-h] show quick reference guide (only)

scalasca
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● Measurement & analysis runtime system
■ Manages runtime configuration and parallel execution
■ Configuration specified via EPIK.CONF file or environment

► epik_conf reports current measurement configuration
■ Creates experiment archive (directory): epik_<title>
■ Optional runtime summarization report
■ Optional event trace generation (for later analysis)
■ Optional filtering of (compiler instrumentation) events
■ Optional incorporation of HWC measurements with events

► via PAPI library, using PAPI preset or native counter names

● Experiment archive directory
■ Contains (single) measurement & associated files (e.g., logs)
■ Contains (subsequent) analysis reports

EPIK
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● Automatic instrumentation of OpenMP & POMP directives 
via source pre-processor
■ Parallel regions, worksharing, synchronization
■ Currently limited to OpenMP 2.5

► No special handling of guards, dynamic or nested thread teams
■ Configurable to disable instrumentation of locks, etc.
■ Typically invoked internally by instrumentation tools

● Used by Scalasca/Kojak, ompP, TAU, VampirTrace, etc.
■ Provided with Scalasca, but also available separately

► OPARI 1.1 (October 2001)
► OPARI 2.0 currently in development

OPARI
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● Parallel program analysis report exploration tools
■ Libraries for XML report reading & writing
■ Algebra utilities for report processing
■ GUI for interactive analysis exploration

► requires Qt4 or wxGTK widgets library
► can be installed independently of Scalasca instrumenter and 

measurement collector/analyzer, e.g., on laptop or desktop

● Used by Scalasca/Kojak, Marmot, ompP, PerfSuite, etc.
■ Analysis reports can also be viewed/stored/analyzed with 

TAU Paraprof & PerfExplorer
■ Provided with Scalasca, but also available separately

► CUBE 3.3.1 (November 2010)

CUBE3
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Analysis presentation and exploration

● Representation of values (severity matrix)
on three hierarchical axes
■ Performance property (metric)
■ Call-tree path (program location)
■ System location (process/thread)

● Three coupled tree browsers

● CUBE3 displays severities
■ As value: for precise comparison
■ As colour: for easy identification of hotspots
■ Inclusive value when closed & exclusive value when expanded
■ Customizable via display mode
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Scalasca analysis report explorer (summary)

How is it
distributed across
the processes?

What kind of
performance

problem?
Where is it in the

source code?
In what context?
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Scalasca analysis report explorer (trace)

Additional
metrics

determined
from trace
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● Computational astrophysics
■ (magneto-)hydrodynamic simulations on 1-, 2- & 3-D grids
■ part of SPEC MPI2007 1.0 benchmark suite (132.zeusmp2)
■ developed by UCSD/LLNL
■ >44,000 lines Fortran90 (in 106 source modules)
■ provided configuration scales to 512 MPI processes

● Run with 512 processes on JUMP
■ IBM p690+ eServer cluster with HPS at JSC

● Scalasca summary and trace measurements
■ ~5% measurement dilation (full instrumentation, no filtering)
■ 2GB trace analysis in 19 seconds
■ application's 8x8x8 grid topology automatically captured from 

MPI Cartesian

ZeusMP2/JUMP case study
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Scalasca summary analysis: zeusmp2 on jump

● 12.8% of time spent 
in MPI point-to-point 
communication

● 45.0% of which is 
on program callpath 
transprt/ct/hsmoc

● With 23.2% std dev 
over 512 processes

● Lowest values in 3rd  
and 4th planes of the 
Cartesian grid
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Scalasca trace analysis: zeusmp2 on jump

● MPI point-to-point 
communication time 
separated into 
transport and Late 
Sender fractions

● Late Sender 
situations dominate 
(57%)

● Distribution of 
transport time (43%) 
indicates congestion 
in interior of grid
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● Automatic function instrumentation (and filtering)
■ CCE, GCC, IBM, Intel, PathScale & PGI compilers
■ optional PDToolkit selective instrumentation (when available) 

and manual instrumentation macros/pragmas/directives
● MPI measurement & analyses
■ scalable runtime summarization & event tracing
■ only requires application executable re-linking
■ P2P, collective, RMA & File I/O operation analyses

● OpenMP measurement & analysis
■ requires (automatic) application source instrumentation
■ thread management, synchronization & idleness analyses

● Hybrid OpenMP/MPI measurement & analysis
■ combined requirements/capabilities

Scalasca 1.3 functionality
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● Improved configure/installation
● Support for using PDToolkit to instrument sources
■ selective instrumentation of source files and routines

● Consistent instrumentation selection
■ automatic (compiler/pdt) and/or manual (pomp/user)

● Measurement configuration of MPI event wrappers
■ specify desired categories of events, e.g., P2P, COLL, RMA

● MPI RMA (one-sided communication) analysis
● Improved OpenMP (and hybrid) measurement & analysis
■ specify desired number of threads: ESD_MAX_THREADS
■ consistent automatic analyses of traces

● Improved documentation of analysis reports

Scalasca 1.3 added functionality
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● Instrumentation
■ Separate OpenMP instrumenter (OPARI) distribution
■ Scalasca source instrumentation via TAU/PDToolkit
■ Adapter for VT manual instrumentation macros
■ TAU instrumentation with Scalasca measurement libraries

● Trace utilities
■ Trace conversion utilities for VT/OTF, Paraver, JumpShot
■ Vampir visualization of Scalasca traces (without conversion)

● Analysis report utilities
■ Separate report generation/manipulation library and GUI 

(CUBE3) distribution
■ Alternative presentation with TAU Paraprof/PerfExplorer

● Part of Unified Tool Environment (UNITE) bundle

Scalasca interoperability
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