
Periscope
Tutorial Exercise

NPB-MPI/BT

M. Gerndt, V. Petkov, Y. Oleynik, S. Benedict

Technische Universität München

periscope@lrr.in.tum.de

October 2010

NPB-BT Exercise

● Intermediate-level tutorial example

● Available in MPI, OpenMP, hybrid OpenMP/MPI variants

■ also MPI File I/O variants (collective & individual)

● Automatic performance properties search with Periscope:

■ Source code instrumentation

► Loops, MPI & application function calls

■ Automatic search for slow MPI communication patterns

■ Results exploration with Eclipse based GUI

● Manual instrumentation optimization

• Configuration of Periscope

• Program instrumentation: psc_instrument

• Periscope analysis: psc_frontend

• Performance properties exploration: Periscope GUI

• Documentation:
 DVD Index → Periscope User's Guide

Exercise steps

● Before first use of Periscope, one has to create the
configuration file .periscope in the home directory.
Configuration could be copied from $PERISCOPE_ROOT:

● It should look like:

% cp $PERISCOPE_ROOT/etc/periscope.sample ~/.periscope

Configuring Periscope

MACHINE = localhost //hostname

SITE = LiveDVD

REGSERVICE_HOST = localhost //host of registry

REGSERVICE_PORT = 50001 //port of the registry

APPL_BASEPORT = 51000 //first port for application

AGENT_BASEPORT = 50002 //first port agent hierarchy

• Registry enables the agents and the application to
connect.

• The registry listens at the port specified in .periscope.

• Command line:

> psc_regsrv &

• Check the registry:

> telnet localhost port_number

> list

> quit

Starting the Registry

● A program must to be instrumented before it can be
analyzed by Periscope.

● Easily done by prefixing the compiler command with our
instrumentation script psc_instrument:

% psc_instrument --help

Periscope Source-to-Source Instrumentation Wrapper

Usage: psc_instrument [-t regions] [-n] [-s sir] [-v] [-d] compiler

 [options] file [libs]

-t Types of regions to instrument separated by commas

 (e.g. -t user,loop,call,mpi,omp)

-s File name for the resulting SIR file (default: appl.sir)

-f <fixed | free> Force a specific Fortran file format

-v Verbose output

-d Debug mode: keeps the instrumented source files

-n Prints each step of the compilation instead of executing them

Instrumenting an application

• Edit NPB3.3/config/make.def

• remove `#

 in line 39

• #MPIF77 = psc_instrument ...

• Compile with

> make bt CLASS=W NPROCS=16

Adapt Makefile

• Why?

• To reduce the instrumentation overhead.

• To circumvent problem with source level instrumentation.

• How?

• -t switch of psc_instrument

• Determines the region types to be instrumented.

• All files are instrumented in the same way.

• psc_inst_config

• Generated from all source files in the directory

• If –t switch is omitted, the file determines the instrumentation.

• You can specify: none, module, sub, loop ...

Controlling the Instrumentation

● Periscope is started via the frontend. It automatically starts
application and hierarchy of analysis agents.

● Run psc_frontend --help for brief usage information

% psc_frontend --help

Usage: psc_frontend <options>

 [--help] (displays this help message)

 [--quiet] (do not display debug messages)

 [--registry=host:port] (address of the registry service, optional)

 [--port=n] (local port number, optional)

 [--maxfan=n] (max. number of child agents, default=4)

 [--timeout=secs] (timeout for startup of agent hierarchy)

 [--dontcluster] (Do not use online clustering)

 [--debug=level]

 [--delay=n] (search delay in phase executions)

 [--appname=name]

 [--apprun=commandline] (bt_W.16 or “your_app -F config.file”)

 [--mpinumprocs=number of MPI processes]

 [--ompnumthreads=number of OpenMP threads]

 [--strategy=name] (MPI,SCA,SCABF,P6,P6BF,P6BF_Memory,

 SCPS_BF,scalability_OMP)

 [--sir=name] (File containing the instrumentation outline)

Periscope Frontend

• Start the benchmark
> cd bin.periscope

> psc_frontend --apprun=bt_W.16 --mpinumprocs=16

 --strategy=MPI

 --sir=bt_W.16.sir

 --bg-mode=SMP, DUAL, VN

 --maxfan=10

• Steps

1. Frontend starts the application.

2. FE starts the agent hierarchy.

3. Analysis agents execute one or more analysis steps.

4. AA report the properties back to the frontend.

5. FE outputs the found properties into properties.psc

Execute the Application

● Double-click on Eclipse icon on the Desktop

● Or start it from console
% eclipse

Starting Periscope GUI

Fortran projects
perspective

● Start it directly from Eclipse:
Run → External Tools → Periscope Registry

Periscope Registry Service

● Uncomment the compiler command for Periscope in
config/make.def (the one with psc_instrument)

Instrumenting NPB-MPI BT

Using Make Targets to Control the Build

● Clean old compilation files using the Clean make target.

Make Targets

Provide easy one-click
compilation based on

existing makefiles

Console View
Shows build/runtime output

Building NPB-MPI BT

● Re-build BT using the BT_W 16cpus make target

● Check the compilation output in the Console view

**** Build of configuration Default for project NPB3.3 ****

make bt CLASS=W NPROCS=16

 ===

 = NAS Parallel Benchmarks 3.3 =

 = MPI/F77/C =

 ===

cd BT; make NPROCS=16 CLASS=W SUBTYPE= VERSION=

make[1]: Entering directory `BT'

 [...]

psc_instrument -s bt.sir -t user,loop,call mpif77 -c -O -g bt.f

psc_instrument -s bt.sir -t user,loop,call mpif77 -c -O -g make_set.f

 [...]

psc_instrument -s bt.sir -t user,loop,call mpif77 -O \

-o ../bin.periscope/bt_W.16 bt.o

Built executable ../bin.periscope/bt_W.16

make[1]: Leaving directory `BT'

● Open the Eclipse Run Configurations:
Run → Run Configurations...

● Start the analysis using the profile for BT_W on 16 cpus

Using a Predefined Run Config for Periscope

● Check the analysis output in the Console view:

● Refresh the bin.periscope/ folder to check for the

results: Select the folder → Right-click →
Refresh

Periscope Performance Analysis Tool

[psc_frontend][INFO:fe] Preparing to start the performance analysis...

[psc_frontend][INFO:fe] Starting application ./bt_W.16 using 16 MPI procs

[psc_frontend][INFO:fe] Starting agents network...

[psc_frontend][DBG0:fe] Agent network UP and RUNNING. Starting search.

 NAS Parallel Benchmarks 3.3 -- BT Benchmark

 No input file inputbt.data. Using compiled defaults

 Size: 24x 24x 24

 Iterations: 200 dt: 0.0008000

 Number of active processes: 16

 [...]

 Time step 200

 BT Benchmark Completed.

[psc_frontend][INFO:fe] Exporting results to properties.psc

End Periscope run! Search took 60.5 seconds (33.1 seconds for startup)

Analysis Output of Periscope

Keep in mind
this number!
Keep in mind
this number!

Loading the detected bottlenecks

Go to bin.periscope/,
search for and select bt_W.16.psc.

Then, right-click and choose
Periscope->Load all properties

Periscope GUI

Periscope Properties
 View

SIR Outline View

Project Explorer
View

Source Code
View

● Properties View: Multi-functional table for the visualization of
bottlenecks

■ Multiple criteria sorting algorithm

■ Complex categorization utility

■ Searching engine using Regular Expressions

■ Filtering operations

■ Direct navigation from the bottlenecks to their precise source location using
the default IDE editor for that source file type (e.g. CDT/Photran editor).

● SIR Outline View: Shows a combination of the standard intermediate
representation (SIR) of the analysed application and the distribution of
its bottlenecks. The main goals of this view are to assist the navigation
in the source code and attract developer's attention to the most
problematic code areas.

Periscope GUI report exploration features

● Properties view

● Sort by severity

● Double click on the property name takes you to the source code

● Outline view

● Hide empty regions

● Double click on the region takes you to the region and filters the
properties for this region in the properties view

● Properties view

● Clear all filters

● Group by regions

● Cluster

Periscope GUI report exploration features

● Periscope performs multiple iterative performance measurement
experiments on the basis of Phases:

■ All measurements are performed inside phase

■ Begin and end of phase are global synchronization points

● By default phase is the whole program

■ Needs restart if multiple experiments required (single core performance analysis
strategies require multiple experiments)

■ Unnecessary code parts also measured

● User specified region in Fortran files that is marked with !$MON USER
REGION and !$MON END USER REGION will be used as phase:

■ Typically main loop of application → no need for restart, faster analysis

■ Unnecessary code parts are not measured → less measurements overhead

■ Severity value is normalized on the main loop iteration time → more precise
performance impact estimation

Periscope Phases

Initialization
Measurement

phase
Finalization

Analysis

Main loop
iteration

1. Search for “bt.f”
and double-click

2. Go to line 203 (CTRL+L)
 and

surround “call adi”

with
!$MON USER REGION

!$MON END USER REGION

3. Save file (CTRL+S)

Defining a User Region in BT

● Clean and rebuild the BT executable after saving your modifications

● Re-run Periscope analysis as before using the Run Configuration

● Only 1 iteration of BT is now required instead of the 200 in the
previous run!

● The analysis time is decreased but the quality of the results stays the
same!

Periscope Performance Analysis Tool

 NAS Parallel Benchmarks 3.3 -- BT Benchmark

 [...]

 Time step 1

 BT Benchmark Completed.

[psc_frontend][INFO:fe] Exporting results to properties.psc

End Periscope run! Search took 35.2 seconds (33.3 seconds for startup)

Re-running BT with the defined User Region

Do you
remember this?
Do you
remember this?

• Periscope components

• Frontend and high-level agents execute on the Bluegene
frontend.

• Analysis agents run on the IO nodes. The tool startup
support in mpirun is used.

• Eclipse can be used on the frontend.

• No automatic restart for multi-phase strategies.

Periscope on the Bluegene

Feedback / Questions?

Contact us:
 periscope@lrr.in.tum.de

