
Performance Analysis Basics

Michael Gerndt (gerndt@in.tum.de)
Felix Wolf (f.wolf@grs-sim.de)

October 31 2010
Munich Centre for
Advanced Computing

Overview

1. Motivation
2. Performance analysis basics
3. Measurement techniques
4. Analysis techniques
5. The tools

2

Motivation

•  Why performance analysis at all? Moore's Law still
in charge

3
Source: Wikipedia

Motivation

•  But Free Lunch is over

4

Motivation

•  Two parallel architectures
–  Shared memory

•  OpenMP
•  Pthreads
•  Threading Building Blocks
•  …

–  Distributed memory
•  MPI
•  Partitioned Global Address Space (e.g., UPC)
•  Sockets

•  Today also heterogeneous systems
–  CUDA, OpenCL
–  Not covered here

Motivation

•  Amdahl's Law:
–  The speedup of a program using multiple processors in parallel

computing is limited by the time needed for the sequential
fraction of the program.

Source: Wikipedia

Motivation

•  High complexity in parallel and distributed systems
–  Application

•  Algorithm, data structures
–  Parallel programming interface

•  Compiler, parallel libraries, communication, synchronization
–  Operating system

•  Process and memory management, IO
–  Hardware

•  CPU, memory, network

Motivation

•  Factors which influence performance of parallel
programs
–  “Sequential” factors

•  Computation
•  Cache and memory
•  Input / output

–  “Parallel” factors
•  Communication (message passing)
•  Threading
•  Synchronization
•  Parallel I/O

Performance Analysis Process

Measurement

Analysis

Ranking

Refinement

Coding

Performance Analysis

Production

Program Tuning

Performance Prediction and Benchmarking

•  Performance analysis determines the performance on
a given machine.

•  Performance prediction allows to evaluate programs
for a hypthetical machine. It is based on:
–  runtime data of an actual execution
–  machine model of the target machine
–  analytical techniques
–  simulation techniques

•  Benchmarking determines the performance of a
computer system on the basis of a set of typical
applications.

Overview

1. Motivation
2. Performance analysis basics
3. Measurement techniques
4. Analysis techniques
5. The tools

11

Overhead Analysis

•  How to decide whether a code performs well:
–  Comparison of measured FLOPS with peak performance
–  Comparison with a sequential version

–  Estimate distance to ideal
time via overhead classes

•  tmem

•  tcomm

•  tsync

•  tred
•  ...

1
1 #processors

sp
ee

du
p

2

2 

tmem

tcomm

tred

Other Performance Metrics

•  Scaled speedup
–  Problem size grows with machine size

–  Speedup can not be defined as Time(1) / Time(p) for scaled up
problem since time(1) is hard to measure and inappropriate

–  Insert performance=work/time in speedup formula gives

Other Performance Metrics

•  Parallel efficiency: Percentage of ideal speedup

The Basics

•  Successful tuning is a combination of
–  right algorithms and libraries
–  compiler flags and directives
–  thinking!

•  Measurement is better than guessing:
–  to determine performance problems
–  to validate tuning decisions and optimization

•  Measurement should be repeated after each significant
code modification and optimizations

15

The Basics

•  Do I have a performance problem at all?
–  Compare MFlops/MOps to typical rate
–  Speedup measurements

•  What are the hot code regions?
–  Flat profiling

•  Is there a bottleneck in those regions?
–  Single node: Hardware counter profiling
–  Parallel: Synchronization and communication analysis profiling

•  Does the bottleneck vary over time or processor space?
–  Profiling individual processes and/or threads
–  Tracing

•  Does the code behave similar for different configurations?
–  Analyze runs with different processor counts
–  Analyze different input configurations

Performance Analysis

Instrumentation Analysis

Execution

refinement

Current Hypotheses

Requirements Performance Data

Detected Bottlenecks

Instr: DatISPEC

Info: HypDat

Prove: Hyp×Dat{T,F}

Refine: HypPHyp

Performance Measurement Techniques

•  Event model of the execution
–  Events occur at a processor at a specific point in time
–  Events belong to event types

•  clock cycles
•  cache misses
•  remote references
•  start of a send operation
•  ...

•  Profiling: Recording accumulated performance data for
events
–  Sampling: Statistical approach
–  Instrumentation: Direct measurement

•  Tracing: Recording performance data of individual
events

Sampling

Program Main
...
end Main
Function Asterix (...)
...
end Asterix
Function Obelix (...)
...
end Obelix
...

CPU
program counter

cycle counter

cache miss counter

flop counter

Main
Asterix
Obelix +

Function Table
interrupt every
10 ms

add and reset
counter

...
Function Obelix (...)
 call monitor(“Obelix“, “enter“)
...
 call monitor(“Obelix“,“exit“)
end Obelix
...

CPU

monitor(routine, location)
 if (“enter“) then

 else

 end if Function Table

Instrumentation and Monitoring

cache miss counter

Main

Asterix

Obelix + - 10 200 1300 1490

Instrumentation Techniques

•  Source code instrumentation
–  done by the compiler, source-to-source tool, or manually

+  portability
+  link back to source code easy
•  re-compile necessary when instrumentation is changed
•  difficult to instrument mixed-code applications
•  cannot instrument system or 3rd party libraries or executables

•  Object code instrumentation
–  „patching“ the executable to insert hooks (like a debugger)

•  inverse pros/cons
–  Offline
–  Online

Tr P n-1

Trace P1

Tracing

...
Function Obelix (...)
 call monitor(“Obelix“, “enter“)
...
 call monitor(“Obelix“,“exit“)
end Obelix
...

MPI Library
Function MPI_send (...)
 call monitor(“MPI_send“, “enter“)
 ...
 call PMPI_send(...)

 call monitor(“MPI_send“,“exit“)
end Obelix
...

Process 0

Process 1

Process n-1

Trace P0

Tr P n-1

Trace P1

Merging

Trace P0

Merge Process

P0 - Pn-1

Visualization of Dynamic Behaviour

P0 - Pn-1

P0

P1

10.4 10.5 10.6 10.7 10.8 10.9 11.0

Timeline Visualization

Obelix

Obelix MPI_Recv

MPI_Send Obelix

Obeli

Profiling vs Tracing

•  Profiling
–  recording summary information (time, #calls,#misses...)
–  about program entities (functions, objects, basic blocks)
–  very good for quick, low cost overview
–  points out potential bottlenecks
–  implemented through sampling or instrumentation
–  moderate amount of performance data

•  Tracing
–  recording information about events
–  trace record typically consists of timestamp, processid, ...
–  output is a trace file with trace records sorted by time
–  can be used to reconstruct the dynamic behavior
–  creates huge amounts of data
–  needs selective instrumentation

Overview

1. Motivation
2. Performance analysis basics
3. Measurement techniques
4. Analysis techniques
5. The tools

26

Performance Analysis

Instrumentation Analysis

Execution

refinement

Current Hypotheses

Requirements Performance Data

Detected Bottlenecks

Instr: DatISPEC

Info: HypDat

Prove: Hyp×Dat{T,F}

Refine: HypPHyp

Common Performance Problems with MPI Programs

•  Single node performance
–  Excessive number of 2nd-level cache misses
–  Low number of issued instructions

•  IO
–  High data volume
–  Sequential IO due to IO subsystem or sequentialization in the

program

•  Excessive communication
–  Frequent communication
–  High data volume

Common Performance Problems with MPI

•  Frequent synchronization
–  All-to-all operations
–  Barrier operations

•  Load balancing
–  Wrong data decomposition
–  Dynamically changing load

Common Performance Problems with SM

•  Single node performance
–  ...

•  IO
–  ...

•  Excessive communication
–  Large number of remote memory accesses
–  False sharing
–  False data mapping

•  Frequent synchronization
–  Implicit synchronization of parallel constructs
–  Barriers, locks, ...

•  Load balancing
–  Uneven scheduling of parallel loops
–  Uneven work in parallel sections

Analysis Techniques

•  Offline vs online analysis
–  Offline: first generate data then analyse
–  Online: generate and analyze data while application is running
–  Online requires automationlimited to standard bottlenecks
–  Offline suffers more from size of measurement information

•  Three techniques to support user in analysis
–  Source-level presentation of performance data
–  Graphical visualization
–  Ranking of high-level performance properties

Analysis Techniques: Flat Profile

32

excerpt from scalasca

Analysis Techniques: Call-path profile

33

excerpt from scalasca

Analysis Techniques: Timeline

34
excerpt from vampir

Analysis Techniques: Properties on Source
Level

Analysis Techniques

More later at this workshop

36

Overview

1. Motivation
2. Performance analysis basics
3. Measurement techniques
4. Analysis techniques
5. The tools

37

The Tools

•  Callgrind / Kcachegrind
–  Cache analysis via simple cache simulation

•  Periscope
–  Automatic detection of performance properties
–  Profile data
–  Online

•  Scalasca
–  Call-path profiling & tracing library
–  Automatic trace analysis

•  VAMPIR
–  Visual trace analysis

•  IBM HPC Toolkit
–  Profiling and tracing

Overview

1. Motivation
2. Performance analysis basics
3. Measurement techniques
4. Analysis techniques
5. The tools

39

