
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tools
Guide
June 2025

Introduction

The mission of the Virtual Institute - High Productivity Supercomputing
(VI-HPS1) is to improve the quality and accelerate the development process
of complex simulation codes in science and engineering that are being
designed to run on highly-parallel computer systems. For this purpose, the
partners of the VI-HPS are developing integrated state-of-the-art program-
ming tools for high-performance computing that assist programmers in
diagnosing programming errors and optimizing the performance of their
applications.

This Tools Guide offers a brief overview of the technologies and tools
developed by the 17 partner institutions of the VI-HPS. It is intended to
assist developers of simulation codes in deciding which of the tools of
the VI-HPS portfolio is best suited to address their needs with respect to
debugging, parallelization, correctness checking, and performance analysis.
To simplify navigation and to quickly locate the appropriate tool for a
particular use case, an icon list on the left margin of each double page
indicates the main characteristics of the corresponding tool. The following
paragraphs provide brief definitions of what is meant by each of these
icons in the context of this guide.

Single-node vs. Parallel: These icons indicate whether a tool focuses
on either single-node or parallel characteristics, or both. Here, single-node
refers to characteristics of serial, shared-memory or accelerated programs
executing on a single system, while parallel relates to programs executing
on multiple nodes of a cluster using some communication library such as
MPI (i.e., using distributed memory parallelism).

Focus

single

parallel

Performance vs. Debugging vs. Correctness vs. Workflow: Perfor-
mance tools provide information about the runtime behavior of an appli-
cation and/or inefficient usage of the available hardware resources. This
data can be obtained in various ways, e.g., through static code analysis,
measurements, or simulation. Debugging tools, on the other hand, may
be used to investigate a program – either live at execution time or post-
mortem – for possible errors by examining the value of variables and the
actual control flow.

Focus

perform

debug

correct

workflow

In contrast, a correctness checking tool detects errors
in the usage of programming models such as MPI against certain error
patterns and reports them to the user, usually performing the analysis

1https://www.vi-hps.org

https://www.vi-hps.org

right at runtime. Finally, workflow tools help to automate certain tasks and
workflows and thus improve overall productivity.

Programming models: Over the years, many different programming
models, libraries and language extensions have been developed to simplify
parallel programming. Unfortunately, tools need to provide specific support
for each programming model individually, due to their different charac-
teristics. The corresponding icon list indicates which of the programming
models and libraries most-commonly used in the area of high-performance
computing are supported by a tool. In particular, these are the de-facto
standard for distributed-memory parallelization MPI, the shared-memory
programming extensions OpenMP, Pthreads (a.k.a. POSIX threads) and
OmpSs, the programming models CUDA, HIP, OpenCL and OpenACC tar-
geting accelerators, as well as the partitioned global address space (PGAS)
languages/libraries UPC, SHMEM, and GASPI. However, it may be possible
that a tool supports additional programming models, which will then be
indicated in the tool description.

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Languages: Some tools may be restricted with respect to the program-
ming languages they support, for example, if source-code processing is
required. Here, we only consider the most commonly used programming
languages in HPC, namely C, C++, Fortran, and Python. Again, it may
be possible that tools support further languages or are even language-
independent, which will then be mentioned in the description.

Language

C

C++

Fortran

Python

Processor architectures: Finally, tools may support only certain CPU
architectures and/or offer support for GPUs. Others are essentially CPU
architecture agnostic, however, may not have tested support for all archi-
tectures. Here the most common architectural families are distinguished,
and details of variants (such as 32-bit vs 64-bit) may be found in the accom-
panying text. x86 includes Intel Xeon Phi (MIC) and AMD x86-compatible
processors, Power includes PowerPC, and GPU covers attached general-
purpose graphical processing unit devices from Nvidia, AMD and others.
Not all variants within these families may be supported, and additional
processor architectures may be mentioned in the description.

Processor

x86

Power

ARM

GPU

Imprint
Copyright © 2025 Partners of the Virtual Institute – High Productivity Supercomputing

Contact: info@vi-hps.org

ArcherFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Archer is a data race detector for OpenMP programs. Archer builds
on open-source tool infrastructure such as OMPT and ThreadSanitizer to
provide portability. As a result, Archer achieves very high accuracy and
precision in the data race reports. Since 2019, the tool is developed within
the LLVM project. Archer is distributed with all Clang-based compiler suites.

Typical questions Archer helps to answer

• My OpenMP program intermittently fails (e.g. hang, crash, incorrect
results) or slows down, is this caused by a data race?

• At what point of execution (i.e., source line and stack trace), does
this race occur exactly?

• What is the root cause (e.g., incorrect variable scoping and unsyn-
chronized global variable access)?

Workflow

Compile the application with additional flags:

-fsanitize=thread -g -O3 -fno-omit-frame-pointer

Execute the application:

TSAN_OPTIONS=’ignore_noninstrumented_modules=1’ ./a.out

Platform support

Linux x86_64, IBM Power
Distributed with most Clang-based compilers (LLVM, Intel, AMD, HPE/Cray,
...)

License

Apache License 2.0 (LLVM)

Web page

https://github.com/pruners/archer

https://github.com/pruners/archer

Contact

jenke@itc.rwth-aachen.de

Figure 2 gives detailed information for a data race detected by Archer in
the source code displayed in Figure 1.

1 #include <stdio.h>
2 int main(int argc, char **argv) {
3 int a = 0;
4 #pragma omp parallel
5 {
6 // Unprotected read
7 if (a < 100) {
8 // Critical section
9 #pragma omp critical

10 {
11 // Shared memory access
12 a++;
13 }
14 }
15 }
16 }

Figure 1: OpenMP example with a data race.

WARNING: ThreadSanitizer: data race (pid=124)
Write of size 4 at 0x7ffd6825da6c by main thread (mutexes: write M0):

#0 main.omp outlined debug race.c:14:10 (race+0xeead8)
#1 main.omp outlined race.c:6:1 (race+0xeead8)
#2 kmp invoke microtask <null> (libomp.so+0xc3de8)
#3 main race.c:6:1 (race+0xeea70)

Previous read of size 4 at 0x7ffd6825da6c by thread T1:
#0 main.omp outlined debug race.c:9:9 (race+0xeea9f)
#1 main.omp outlined race.c:6:1 (race+0xeea9f)
#2 kmp invoke microtask <null> (libomp.so+0xc3de8)
#3 main race.c:6:1 (race+0xeea70)

Figure 2: Archer output identifying the data race. Mutex M0 represents the
critical region.

mailto:jenke@itc.rwth-aachen.de

CaliperFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Caliper is a performance analysis toolbox in a library. Caliper can be used
for lightweight always-on profiling, such as printing performance reports
for application logs. In addition, Caliper supports advanced MPI, tracing,
call-stack sampling, I/O, memory, CUDA, and hardware counter analyses.
Caliper region annotations can also be forwarded to third-party tools, such
as Allinea MAP, TAU, Intel VTune, and NVidia Visual Profiler.

Typical questions Caliper helps to answer

• How much time does each program region take? How much time is
spent in MPI or CUDA calls?

• How much memory and I/O bandwidth is used in each region?

• How does performance differ with different program inputs?

Workflow

Mark code regions of interest with Caliper’s source-code annotation macros.
Optionally, create a ConfigManager object at the start of the program,
which provides access to Caliper’s built-in measurement configurations
through a short configuration string. This string can be hard-coded or
provided by the user, for example as an application command-line argu-
ment. Alternatively, custom measurement configurations can be provided
through environment variables or configuration files.

Caliper can aggregate measurement results on-the-fly, both within pro-
cesses and across MPI ranks, and write out results in human-readable text
form using a hierarchical or flat table layout. Alternatively, data can be
written to disk in Caliper’s native .cali format or various JSON formats for
additional post-processing.

Caliper’s annotation macros are designed to be permanently integrated
in the target codes to enable lightweight, always-on performance profiling.
Annotations are extremely flexible - in addition to source code regions, de-
velopers can add custom key:value attributes to describe domain-specific
concepts. Moreover, Caliper can record run metadata, such as the system
environment or program configuration, to simplify performance compar-
isons across multiple program runs.

Platform support

Any POSIX compatible OS. C, C++, and Fortran codes.

License

Modified BSD license.

Web page

https://www.github.com/LLNL/Caliper

Contact

https://github.com/LLNL/Caliper/issues

Figure 3 shows Caliper printing a performance report for a serial execu-
tion of a Caliper-enabled program with the inclusive and exclusive time as
well as the memory high-water mark for each annotated region. This exam-
ple uses Caliper’s ConfigManager API and the configuration string given in
the -P command-line option to control the performance measurement.

Figure 3: Printing a runtime report in a Caliper-enabled program.

https://www.github.com/LLNL/Caliper
https://github.com/LLNL/Caliper/issues

CallgrindFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Callgrind is a profiling tool for multithreaded, compiled binary code using
execution-driven cache simulation. It is able to build the dynamic call
graph from execution on the fly. The results are best browsed with the
KCachegrind GUI, which provides call graph and treemap visualizations as
well as annotated source and assembler instruction views.

Simulating an easy-to-understand machine model, Callgrind allows for
reproducible measurements which may not be available through hardware,
such as sub-cacheline utilization.

Typical questions Callgrind helps to answer

• What is the dynamic call graph of a program?

• Is bad cache exploitation the reason for slow program execution?

• What are the call-paths suffering from bad cache behavior?

• Does a given cache optimization actually reduce misses?

Workflow

Callgrind does its observation of code execution by automatic runtime
instrumentation using the open-source tool Valgrind. As such, the only
preparation needed for detailed analysis is to add debug information to the
optimized binary, typically via compiler options “-g -O2”. As simulation can
induce a slowdown of up to factor 100, the program may be modified to
execute only relevant parts. Further, for sections of code, cache simulation
and/or call graph generation may be skipped for faster execution (with
slowdown down to factor 3). The reproducibility of simulation allows for
very detailed comparison of the effect of code modifications (especially
cache optimization).

Platform support

Callgrind is part of Valgrind releases, and supports the same platforms (for
Valgrind 3.14, this includes Linux on x86/x86_64, Power, ARM, MIPS).

License

GNU General Public License (GPL) v2

Web page

http://www.valgrind.org, http://kcachegrind.sourceforge.net

Contact

kcachegrind-callgrind@lists.sourceforge.net

Figure 4 shows the call graph of the inner workings of the Intel OpenMP
runtime, calling tasks from a Jacobi solver which uses recursive blocking for
cache optimization. Callgrind allows recursion levels of the same function
to be shown as separate items.

While the GUI is comfortable, Callgrind also comes with standard terminal
tools to show the results, such as annotated butterfly call relation lists.
Further, it is possible to control running simulations (show current execution
context, dump results, switch simulation on/off).

Figure 4: KCachegrind showing results from a Callgrind simulation run.

http://www.valgrind.org
http://kcachegrind.sourceforge.net
mailto:kcachegrind-callgrind@lists.sourceforge.net

CARM ToolFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The CARM Tool performs the micro-benchmarking necessary to con-
struct the Cache-Aware Roofline Model (CARM) for floating-point operations
on CPUs. The CARM is an easy to use performance model that offers a
high-level picture on the fundamental memory and compute performance
limitations of a processor, while also providing intuitive analysis of the
application execution bottlenecks. The CARM Tool provides as output a
visualization of the model, as well as the measurements obtained for the
different memory levels, types of FP instruction and SIMD capabilities.
Application analysis can also be performed by using either performance
counters (via PAPI) or dynamic binary instrumentation (via DynamoRIO or
Intel SDE). All the information regarding the constructed CARM and profiled
applications can be observed in the CARM tool GUI.

Typical questions the CARM Tool helps to answer

• How well does the program perform compared with the maximum
possible performance of the architecture?

• What are the main optimization strategies to pursue for the best
performance gains (memory-bound or compute-bound) based on the
CARM?

• What is the maximum speed-up a program can achieve in a given
architecture?

• What is the peak performance of a given architecture under different
ISA/SIMD extensions and thread counts among other factors?

Workflow

To use the CARM Tool one should start by running the automatically gener-
ated tailored benchmarks to obtain the CARM plot for their target system.
These allow for visualizing the peak performance of different memory
levels, ISA extensions, threads, among other parameters. Then, to con-
duct application analysis in the scope of the CARM, users can rely on
several performance tools the CARM Tool interfaces automatically with, i.e.,
PAPI, DynamoRIO, or Intel SDE. After application analysis is executed, the
browser-based GUI of the CARM Tool is usually utilized to facilitate results
visualization, to plot analyzed applications in the CARM and obtain the
model’s insight on the application performance for the target architecture.

Platform support

Linux: x86-64 (AVX512, AVX, SSE), ARM64 (Neon), RISC-V64 (RVV0.7/1.0)

License

GNU Lesser General Public License (LGPL) v2.1

Web page

https://champ-hub.github.io/projects/The_CARM_Tool/

Contact

carm@inesc-id.pt

Figure 5 illustrates the GUI of the CARM Tool, designed for the visualiza-
tion of results. It highlights various features, including the capability to
view various CARM plots tailored to specific configurations for comparative
analysis. Additionally, the interface allows for the display of applications
analyzed using the CARM Tool and includes annotations to important met-
rics, such as peak bandwidths of memory levels and peak GFLOP/s of the
benchmarked system. The GUI is accessible through a Python script and
is browser-based, ensuring compatibility across different computing envi-
ronments. From the sidebar, users can also initiate CARM benchmarks and
perform application analysis.

Figure 5: CARM Tool GUI Overview

https://champ-hub.github.io/projects/The_CARM_Tool/
mailto:carm@inesc-id.pt

CubeFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Cube is a generic tool for manipulating and displaying a multi-dimensional
performance space consisting of the dimensions (i) performance metric,
(ii) call path, and (iii) system resource. Each dimension can be represented
as a tree, where non-leaf nodes of the tree can be collapsed or expanded
to achieve the desired level of granularity and present inclusive or ex-
clusive metric values. In addition, Cube can display multi-dimensional
Cartesian process topologies, highlight a region from a source file, and
present descriptions of metrics.

Typical questions Cube helps to answer

• Which metrics have values indicating performance problems?

• Which call-paths in the program have these values?

• Which processes and threads are most affected?

• How are metric values distributed across processes/threads?

• How do two analysis reports differ?

Workflow

Scalasca, Score-P and other tools use the provided libraries to write analysis
reports in Cube format for subsequent interactive exploration in the Cube
GUI. Additional utilities are provided for processing analysis reports.

Platform support

GUI: Linux (x86/x86_64/IA64/PPC/Power), macOS (x86_64), Windows 10;

Libraries & utilities: IBM Blue Gene/P/Q, Cray XT/XE/XK/XC, SGI Altix (incl.
ICE + UV), Fujitsu FX-10/100 & K Computer, Tianhe-1A, IBM SP & Blade
clusters (incl. AIX), Intel Xeon Phi, Linux clusters (x86/x86_64)

License

BSD 3-Clause License

Web page

https://www.scalasca.org

https://www.scalasca.org

Contact

scalasca@fz-juelich.de

Figure 6 shows a screenshot of a Scalasca trace analysis of the Zeus/MP2
application in the Cube analysis report explorer. The left panel shows that
about 10% of the execution time is spent in the “Late Sender” wait state,
where a blocking receive operation is waiting for data to arrive. The middle
panel identifies how this wait state is distributed across the call tree of the
application. For the selected MPI_Waitall call, which accumulates 12.8%
of the Late Sender time, the distribution across the system is presented in
the right panel, here in the form of a 3D process topology which reflects
the domain decomposition used by Zeus/MP2.

Figure 6: Scalasca trace analysis result displayed by Cube for exploration.

mailto:scalasca@fz-juelich.de

DimemasFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Dimemas is a performance analysis tool for message-passing programs.
The Dimemas simulator reconstructs the temporal behavior of a parallel
application using a recorded event trace and allows simulating the parallel
behavior of that application on a different system. The Dimemas architec-
ture model is a network of parallel clusters. Dimemas supports two main
types of analyses: what-if studies to simulate how an application would
perform in a given scenario (e.g. reducing to half the network latency,
moving to a CPU three times faster...), and parametric studies to analyze
the sensitivity of the code to system parameters (e.g. the execution time
for varying network bandwidths..). The target system is modeled by a
set of key performance factors including linear components like the MPI
point to point transfer time, as well as non-linear factors like resources
contention. By using a simple model Dimemas allows executing parametric
studies in a very short time frame. Dimemas can generate a Paraver trace
file, enabling the user to conveniently examine and compare the simulated
run and understand the application behavior.

Typical questions Dimemas helps to answer

• How would my application perform in a future system?

• Increasing the network bandwidth would improve the performance?

• Would my application benefit from asynchronous communications?

• Is my application limited by the network or the serializations and
dependency chains within my code?

• What would be the impact of accelerating specific regions of my
code?

Workflow

The first step is to translate a Paraver trace file to Dimemas format.
Thereby, it is recommended to focus on a representative region with a re-
duced number of iterations. Second, the user specifies via a configuration
file the architectural parameters of the target machine and the mapping
of the tasks on to the different nodes. Third, the output Paraver trace
file allows then to analyze and compare the simulated scenario with the
original run using the Paraver tool.

Platform support

Linux (x86/x86_64, ARM, Power), SGI Altix, Fujitsu FX10/100, Cray XT, IBM
Blue Gene, Intel Xeon Phi

License

GNU Lesser General Public License (LGPL) v2.1

Web page

http://tools.bsc.es/dimemas

Contact

tools@bsc.es

Figure 7 shows the results of an analysis of sensitivity to network band-
width reductions for two versions of WRF code, NMM and ARW, and with
different number of MPI ranks. We can see that the NMM version demands
less bandwidth (256MB/s) than the ARW version.

Figure 7: Dimemas sensitivity analysis to network bandwidth.

http://tools.bsc.es/dimemas
mailto:tools@bsc.es

DiscoPoPFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

DiscoPoP is a tool that helps software developers parallelize their pro-
grams with threads. It discovers potential parallelism in a sequential
program and makes recommendations on how to exploit it using OpenMP.
Because a compiler does not know the precise value of pointers and array
indices computed at runtime, it may assume parallelism-preventing data
dependences in places where they would never occur in practice. As a
result, automatic parallelization becomes too conservative.

With our parallelism discovery tool DiscoPoP, we aim to circumvent
this problem. We abandon the idea of fully automatic parallelization and
instead, point the programmer to likely parallelization opportunities that
we identify via a combination of static and dynamic dependence analysis.
In this way, we consider only data dependences that actually occur. From
these dynamic dependences, we derive possible parallel design patterns,
which we propose to the programmers to parallelize their programs.

Typical questions DiscoPoP helps to answer

• Is there potential parallelism in my program?

• If yes, which parts of my program can I parallelize?

• How can I parallelize them?

Workflow

Figure 8 shows a high-level overview of DiscoPoP and how it finds paral-
lelization opportunities.

DiscoPoP is built on top of LLVM and achieves its goals in four steps: the
decomposition of the program into parts with negligible internal parallelism,
called computational units, the identification of data dependences among
those units, the selection of parallel design patterns, and finally the sugges-
tion of suitable OpenMP parallelization constructs and data-sharing clauses
to the programmer. To find data dependences, the tool instruments all
memory accesses and control regions. The instrumented application is then

Figure 8: The workflow of DiscoPoP.

executed on actual hardware, and profiling data generated by the instru-
mented code is analyzed on-the-fly to find data dependences among the
computational units. Based on the resulting dependence graph, DiscoPoP
discovers parallelism in terms of parallel design patterns, including pipeline,
doall, geometric decomposition, reduction, and task parallelism. Finally, it
issues recommendations on how to parallelize the program using OpenMP.
Figure 9 shows the parallelization of an example program using DiscoPoP.
The recommendations can be created, browsed, managed, and applied
with the help of an openly available extension to Visual Studio Code.

Platform support

Linux x86_64, depends on LLVM/Clang

License

BSD 3-Clause License

Web page

https://www.discopop.tu-darmstadt.de/
https://github.com/discopop-project/discopop

Contact

discopop-support@lists.parallel.informatik.tu-darmstadt.de

Figure 9: The automation of the parallelization process with DiscoPoP.

https://www.discopop.tu-darmstadt.de/
https://github.com/discopop-project/discopop
mailto:discopop-support@lists.parallel.informatik.tu-darmstadt.de

ExtraeFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Extrae measurement infrastructure is an easy-to-use tool for event
tracing and online analysis. It uses different interposition mechanisms to
inject probes into the target application gathering information regarding
the application performance. Most of these mechanisms work directly with
the production binary, not requiring any special compilation or linking.

Extrae is the instrumentation tool for Paraver and Dimemas and supports
a wide range of HPC platforms and programming models and languages.

Typical questions Extrae helps to answer

• How much time is spent in the parallel runtimes?

• What is the average IPC achieved?

• What is the location in the source code of a given MPI call?

Workflow

Instrumenting with Extrae the production binary only requires to modify
few lines of the execution script. The execution command of the program
to analyze has to be preceded by a launcher script (namely trace.sh). This
script contains just a few definitions to load and configure the Extrae tool.
Users only need to specify:

1. where is Extrae installed (EXTRAE_HOME);

2. which information will be captured (EXTRAE_CONFIG_FILE); and

3. the Extrae tracing library (LD_PRELOAD). Please select the proper
library depending on the type of parallel application (MPI, OpenMP,
OmpSs, Pthreads, CUDA, OpenACC, OpenCL, GASPI, or hybrid combi-
nations).

Once the trace is collected, it is ready to be analysed with Paraver.

Platform support

Linux (x86/x86_64, ARM, RISC-V, Power), SGI Altix, Fujitsu FX10/100, Cray
XT, IBM Blue Gene, Intel Xeon Phi, GPU (CUDA, OpenCL)

License

GNU Lesser General Public License (LGPL) v2.1

Web page

http://tools.bsc.es/extrae

Contact

tools@bsc.es

Figure 10 illustrates two basic examples of how to use the Extrae instru-
mentation package to generate a Paraver trace for MPI (10(a)) and OpenMP
(10(b)) applications. For further reference, please refer to the Extrae’s user
guide:
https://tools.bsc.es/doc/pdf/extrae.pdf

(a) MPI applications

(b) OpenMP applications

Figure 10: Basic examples to activate Extrae

http://tools.bsc.es/extrae
mailto:tools@bsc.es
https://tools.bsc.es/doc/pdf/extrae.pdf

Extra-PFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Extra-P is an automatic performance-modeling tool that supports the
user in the identification of scalability bugs. A scalability bug is a part of
the program whose scaling behavior is unintentionally poor, that is, much
worse than expected.

Extra-P uses measurements of various performance metrics at different
processor configurations as input to represent the performance of code
regions (including their calling context) as a function of the number of pro-
cesses. All it takes to search for scalability issues even in full-blown codes
is to run a manageable number of small-scale performance experiments,
launch Extra-P, and compare the asymptotic or extrapolated performance
of the worst instances to the expectations. Besides the number of pro-
cesses, it is also possible to consider other parameters such as the input
problem size, as well as combinations of multiple parameters.

Extra-P generates not only a list of potential scalability bugs but also
human-readable models for all performance metrics available such as
floating-point operations or bytes sent by MPI calls that can be further
analyzed and compared to identify the root causes of scalability issues.

Typical questions Extra-P helps to answer

• Which regions of the code scale poorly?

• Which metrics cause the run-time to scale poorly?

• What are the best candidates for optimization?

• How will my application behave on a larger machine?

Workflow

Extra-P accepts input files in the Cube format and generates performance
models for each metric and call path rather than individual measured
values. Tools such as Scalasca, Score-P, and others are provided with
libraries that produce analysis reports in the Cube format. The Extra-P
GUI provides the means to visualize, browse, and manipulate the resulting
models. Detailed textual results are also generated by Extra-P for the
in-depth analysis of sensitive code regions.

Platform support

Extra-P is platform independent. It requires only a working Python installa-
tion (≥3.7) as it is installed via pip.

License

BSD 3-Clause License

Web page

https://github.com/extra-p/extrap

Contact

extra-p-support@lists.parallel.informatik.tu-darmstadt.de

Figure 11 shows performance models as generated for different call paths
in Kripke, an open-source 3D Sn deterministic particle transport code. The
performance models are functions of number of processes p, the number
of direction-sets d, and the number of energy groups g. The call tree on
the left allows the selection of models to be plotted on the right. The color
of the squares in front of each call path highlights the complexity class.

Figure 11: Interactive exploration of performance models in Extra-P.

https://github.com/extra-p/extrap
mailto:extra-p-support@lists.parallel.informatik.tu-darmstadt.de

JUBEFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The JUBE environment provides a script-based application and platform
independent framework, which allows the creation and parametrisation
of an automatic workflow execution to be used in benchmark, test or
production scenarios.

Typical questions JUBE helps to answer

• How to run my application in a reproducible way?

• How to easily create a parameter study for my application?

• How to parametrise the different parts of my application from a single
point?

Workflow

JUBE is a Python-based tool which is configured using XML files. Within
these input files an application workflow is based on different steps, where
dependencies and related files can be configured. For program execution
JUBE uses normal Linux shell commands, which allows developers to keep
their existing mechanism to start or manage applications.

In addition JUBE allows a flexible way to specify parameters, which can
be used to control the compilation of the application, its runtime arguments
and behaviour, or the job execution environment.

After program execution, JUBE can also run post-processing tools or scan
any ASCII-based program output to extract useful information like timing in-
formation or performance data. This information is gathered and displayed
in a combined output form together with the selected parametrisation.

Platform support

Linux x86_64, (Python2.6, Python2.7, Python3.2 or any newer version)

License

GPLv3

Web page

http://www.fz-juelich.de/jsc/jube

Contact

jube.jsc@fz-juelich.de

Figure 12 shows an example of the command-line interface used to
control the JUBE execution. Each individual run is stored separately, with a
unique identifier, in the filesystem to allow reproducibility and easier data
exchange.

Figure 12: Command-line view of a JUBE-based benchmark execution.

http://www.fz-juelich.de/jsc/jube
mailto:jube.jsc@fz-juelich.de

LIKWIDFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

LIKWID is a tool suite for performance-oriented programmers offering
command line tools for system topology, CPU/task affinity, hardware perfor-
mance monitoring, micro-benchmarking and more. Besides the command
line tools tools, almost all functionality is provided as a C library to be
integrable in other tools.

Typical questions LIKWID helps to answer

• How does my system look like? How many threads are available?

• How well does my code exploit the provided hardware features?

• How to measure typical performance metrics (like floating-point oper-
ations, memory bandwidth or performance per watt) for my applica-
tion

• How to reduce performance variation and control the placement of
my software threads?

• How can I benchmark my code with different CPU frequencies?

• How does my code behave when hardware prefetcher X is disabled?

• How to run my application on X nodes and measure the metric Y for
all processes?

Workflow

When freshly accessing a new machine, you want to get the system topol-
ogy (likwid-topology) to determine the number of threads and the hardware
threads (CPU cores) the application should run on (likwid-pin). If you have
an MPI application, determine the affinity strategy once and run your MPI+X
application (likwid-mpirun). What is the metric X for my whole application
run or how does it evolve over time (likwid-perfctr)? If you want to measure
loop(s) or routine(s) running on CPUs or GPUs, add MarkerAPI instrumenta-
tion to your code once and control the measurement from the command
line.

You want to get an impression how well a feature improves your perfor-
mance? Write a small benchmark in assembly (to avoid compiler "optimiza-
tions") and run it in a controlled environment.

Platform support

x86/x86_64 (Intel & AMD), ARM8 (Marvell Thunder X2, Fujitsu A64FX, AWS
Graviton2), POWER (POWER8 and POWER9) and Nvidia/AMD GPUs under
the Linux OS.

License

GPLv3

Web page

https://hpc.fau.de/research/tools/likwid/
https://github.com/RRZE-HPC/likwid/wiki
Python interface: https://github.com/RRZE-HPC/pylikwid
Julia interface: https://github.com/JuliaPerf/LIKWID.jl

Contact

rrze-likwid@fau.de or matrix.org chat

Figure 13: Measurement of the load-store-ratio (DATA performance group)
of an application running on four CPU cores (0−3). The first table
lists metrics for each CPU core while the second table contains
statistics of the per-core measurements.

https://hpc.fau.de/research/tools/likwid/
https://github.com/RRZE-HPC/likwid/wiki
https://github.com/RRZE-HPC/pylikwid
https://github.com/JuliaPerf/LIKWID.jl
mailto:rrze-likwid@fau.de
https://app.element.io/#/room/

Linaro DDTFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Linaro DDT is a modern and easy to use parallel debugger widely used
by software developers and computational scientists in industry, academia
and government research. Its interface simplifies concurrency and is highly
responsive even at extreme scale.

The tool is part of Linaro Forge, a development solution that includes
both debugging and profiling capabilities.

Typical questions Linaro DDT helps to answer

• Where is my application crashing?

• Why is my application crashing?

• Why is my application hanging?

• What is corrupting my calculation?

Workflow

Linaro DDT can be used on any supported platform to debug problems
in application behaviour. The first step should be to compile the errant
application with the “-g” compiler flag to ensure debugging information is
provided to the debugger.

Thanks to its "reverse connect" capability, Linaro DDT can be very easily
attached to an application submitted via the batch scheduler. Where
an application has hung, the debugger can attach to existing processes.
A native remote client allows users to debug graphically from remote
locations.

Users interact with the debugged processes - being able to step or “play”
processes, and examine where all processes are, and their variable values
and array data across processes. Memory debugging can be enabled to
detect common errors such as reading beyond array bounds automatically.

Platform support

Any Linux running on aarch64, x86_64, and Nvidia GPUs.

License

Commercial

Web page

https://www.linaroforge.com

Contact

https://www.linaro.org/support#for-linaro-forge4

Figure 14: Linaro DDT parallel debugging session showing multi-
dimensional array viewer.

https://www.linaroforge.com
https://www.linaro.org/support#for-linaro-forge4

Linaro MAPFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Linaro MAP is a modern and easy to use profiling tool that is designed to
help users visually identify performance issues in their application. It inte-
grates profiling information alongside source code and can show metrics
such as vectorization, communication and I/O.

The tool is part of Linaro Forge, a development solution that includes
both debugging and profiling capabilities.

Typical questions Linaro MAP helps to answer

• Where is my code slow - what line and why?

• Am I achieving good vectorization?

• Is memory usage killing my performance?

Workflow

Applications can be launched via Linaro MAP and the performance data will
be recorded automatically. There is no need to recompile, although a “-g”
flag will ensure accuracy of source line information. The “.map” files are
analysed inside the tool and are sufficiently compact to be easily shared.

Platform support

Any Linux running on aarch64, x86_64 and Nvidia GPUs.

License

Commercial

Web page

https://www.linaroforge.com

Contact

https://www.linaro.org/support#for-linaro-forge4

https://www.linaroforge.com
https://www.linaro.org/support#for-linaro-forge4

Figure 15: Linaro MAP parallel profiling session showing execution hotspots
and evolution charts.

Linaro Performance ReportsFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Linaro Performance Reports is a performance tool that aims to provide
information for anyone involved in HPC, not just software developers. It
does not require configuration or any change to the profiled application.

The output provided from a run is a single one-page report on application
performance - containing information such as vectorization, communica-
tion, energy usage and I/O - with advice about what can be explored to
improve the performance.

The tool is part of Linaro Forge, a development solution that includes
both debugging and profiling capabilities.

Typical questions Linaro Performance helps to answer

• What can I do to improve the efficiency of my application?

• What system or usage changes could I make to improve performance?

• How does the underlying hardware impact the performance of my
applications?

Workflow

Applications are launched with a simple prefix-command (“perf-report”)
to the existing MPI launch line. There is no need to recompile or relink on
most platforms. The “.html” report file created is then viewable in any
standard browser.

Platform support

Any Linux running on aarch64, x86_64, and Nvidia GPUs.

License

Commercial

Web page

https://www.linaroforge.com

https://www.linaroforge.com

Contact

https://www.linaro.org/support#for-linaro-forge4

Figure 16: Linaro Performance Reports single page report of an applica-
tion’s CPU, MPI, I/O and Memory usage.

https://www.linaro.org/support#for-linaro-forge4

VI-HPS Tools Overview

VI-HPS Tools

SCALASCA / CUBE

SCORE-P /
EXTRAE

Optimization

Visual trace

analysis

Automatic

profile & trace

analysis

Debugging,

error & anomaly

detection

Hardware

monitoring

Execution

VAMPIR PARAVER

PAPI

MUST /

ARCHER

KCACHEGRIND

MAQAOLIKWID /

MEMCHECKER /

SPINDLE / SIONLIB

STAT

CALIPER / LIKWID /

MAP/PR / MPIP /

O|SS / MAQAO

JUBE

EXTRA-PTAU

DDT

VI-HPS Tools

SCALASCA / CUBE

SCORE-P /
EXTRAE

Optimization

Visual trace

analysis

Automatic

profile & trace

analysis

Debugging,

error & anomaly

detection

Hardware

monitoring

Execution

VAMPIR PARAVER

PAPI

MUST /

ARCHER

KCACHEGRIND

MAQAOLIKWID /

MEMCHECKER /

SPINDLE / SIONLIB

STAT

CALIPER / LIKWID /

MAP/PR / MPIP /

O|SS / MAQAO

JUBE

EXTRA-PTAU

DDT

MAQAOFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

MAQAO (Modular Assembly Quality Analyzer and Optimizer) is a core
performance centric binary analysis and optimization framework operating
on executable binary applications (no recompilation necessary). The tool
applies dynamic and static analyses on extracted/reconstructed high level
structures - loops and functions - to guide application developers through
optimization by providing synthetic and human-friendly reports and hints.

MAQAO was designed as an extensible framework allowing users to eas-
ily develop analysis and instrumentation modules using a Lua API, and
it comes with three ready-to-use modules: LProf (Lightweight Profiler), a
sampling-based profiler that provides a list of hot spots (loops and func-
tions) collected during program execution; CQA (Code Quality Analyzer),
a static analyzer that uses a machine model to evaluate the assembly
code quality of target loops and functions by using key metrics such as
arithmetic units usage and vector length usage; ONE View, a module that
invokes LProf and CQA and aggregates their results in order to build a
human-friendly report that spans a large set of key performance elements.

Typical questions MAQAO helps to answer

• Which functions and loops are the most profitable to optimize?

• What optimizations will be beneficial to a loop and how much gain
can be expected?

• Is a specific loop or function compute-bound or memory-bound?

• How much gain improved parallelization can provide?

Workflow

The analysis process is driven by ONE View, using a configuration file
containing the parameters necessary to launch the target application
and run the analysis modules. Once the analysis is complete, ONE View
generates a human-friendly synthetic HTML report.

This report includes a list of hot spots categorized by their origin: parallel
runtime, I/O, memory, main code, etc. For each hot spot, the report
provides a description of potential issues, an estimation of the impact on
overall application performance, and hints on how to improve performance
through compiler directives or implementation tweaks. MAQAO can also
generate comparison reports between multiple runs of an application with
different datasets or parallel execution parameters.

Platform support

Linux clusters (x86_64 and aarch64)

License

GNU Lesser General Public License (LGPL) v3

Web page

http://www.maqao.org

Contact

contact@maqao.org

Figure 17 presents views from the HTML output generated by ONE View:
(17(a)) an overview of the application performance and estimated achiev-
able speedups, (17(b)) a comparison between multiple runs with different
parallel execution parameters, (17(c)) the list of functions and loops hot
spots, (17(d)) code quality hints and associated relative potential gains.

(a) Global view (b) Multi-runs comparison (scalability mode)

(c) Functions profile (d) Code quality report

Figure 17: Some of MAQAO ONE View HTML outputs.

http://www.maqao.org
mailto:contact@maqao.org

MERIC runtime systemFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The MERIC runtime system from the MERIC energy efficiency HPC soft-
ware suite is a tool for energy efficiency analysis of scientific applications.
The runtime system (library) and its utilities provide information about the
hardware and its usage by the application execution. Besides the power
management related metrics measurement, the MERIC library allows to
control hardware power management knobs (if rights elevated by system
administrators) and to identify optimal parameter configurations for each
instrumented region.

MERIC is designed as a runtime system, which automatically identifies an
optimal configuration of available hardware power management knobs to
save energy with no or user-defined execution time penalty limit. However,
it can also be used as a user tool, which only measures the hardware
resource usage.

Typical questions MERIC runtime system helps to answer

• How much energy does an application execution consume?

• Is my application using the CPU / GPU energy efficiently?

• Which hardware platform to use for my application to be energy
efficient?

• How much energy can be saved using dynamic tuning of power
management knobs with no (or limited) performance penalty?

Workflow

Energy consumption measurement of an application execution can be
done using a command-line utility, which requires being executed three
times: to start, stop, and evaluate a measurement. For additional power
management-related metrics (i.e., FLOPs, vectorization ratio, CPU frequen-
cies, power capping activity ratio), it is necessary to link the application
to be evaluated with the MERIC library. The library must be initialized,
closed, and regions of interest should be identified using the library API.
The application is executed as usual, while MERIC usage is configured using
environment variables.

MERIC stores output to ".CSV" files, which can be analysed using the
RADAR visualizer – a PyQt6 graphical tool designed to present metrics not
only from a single application execution, but also to compare a region’s
resource usage in various configurations.

Platform support

Linux x86_64, ARM64, IBM POWER8/9/10, NVIDIA GPUs, AMD GPUs

Supported power monitoring systems

Intel/AMD RAPL, NVML, ROCm, A64FX, ATOS HDEEM, OCC, DiG

License

BSD 3-Clause license

Web page

https://code.it4i.cz/energy-efficiency/meric-suite/meric

Contact

meric@it4i.cz

Figure 18 presents a window from the RADAR visualizer showing how
the power consumption of the compute blade, CPUs, and DDR memories
varies in time in reaction to changes in the boundedness of the executed
workload.

Figure 18: Power consumption timeline of an executed application.

https://code.it4i.cz/energy-efficiency/meric-suite/meric
mailto:meric@it4i.cz

MUSTFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

MUST detects whether an application conforms to the MPI standard and
is intended to scale with the application (O(10,000) processes). At runtime
it transparently intercepts all MPI calls and applies a wide range of correct-
ness checks (including type matching checks and deadlock detection) to
their arguments. This allows developers to identify manifest errors (ones
you already noticed), portability errors (manifest on other platforms), and
even unnoticed errors (e.g., silently corrupted results). When an applica-
tion run with the tool finishes it provides its results in a correctness report
for investigation.

Typical questions MUST helps to answer

• Has my application potential deadlocks?

• Am I doing type matching right?

• Does my application leak MPI resources?

• Other hidden errors?

Workflow

Replace mpiexec/mpirun/runjob/.. by mustrun:
mpiexec -np 1024 executable→ mustrun -np 1024 executable
After the run inspect the outputfile MUST_Output.html with a browser
(w3m, firefox, . . .).

For Batchjobs: Note that the run uses extra MPI processes to execute
checks, use "--must:info" to retrieve resource allocation information.

Platform support

Linux x86_64, IBM Blue Gene/Q, Cray XE (early support), SGI Altix4700
Tested with various MPI implementations:
Open MPI, Intel MPI, MPICH, MVAPICH2, SGI MPT, . . .

License

BSD 3-Clause License

Web page

https://www.itc.rwth-aachen.de/must

Contact

must-feedback@lists.rwth-aachen.de

Figure 19 gives detailed information for a deadlock situation detected by
MUST (caused by mismatching tags):

Rank 0 reached MPI_Finalize.

Rank 1 is at MPI_Recv(src=MPI_ANY_SOURCE, tag=42).

Rank 2 did MPI_Ssend(dest=1, tag=43).

Figure 19: Visualization of a deadlock situation.

https://www.itc.rwth-aachen.de/must
mailto:must-feedback@lists.rwth-aachen.de

OSACAFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Open-Source Architecture Code Analyzer (OSACA) is a Python-based
static analysis tool for in-core performance prediction of inner-most as-
sembly loops. It is available both as command line application and as
tool within the Compiler Explorer and provides the user with a throughput
prediction of their code in steady state, a critical path analysis and an
across-loops-dependency analysis. Besides its provided machine models
for several x86 and ARM micro-architectures, it is designed in a way so
that the user can easily add its own machine models for architectural
exploration and integrate it in their own workflow via a Python API.

Typical questions OSACA helps to answer

• How fast can my code possibly run (when all data is in L1 cache)?

• What optimizations will be beneficial for my code?

• What is a more realistic roofline for my target code region?

• What are the bottlenecks of my code?

• Why does the code of compiler A perform better than the code of
compiler B?

Workflow

Having the assembly code of your target high-level code, identify the
region of interest and mark it with specific OSACA comment markers
(either manually or with the built-in -insert-marker feature) or reduce
the code to the specific section with the -lines option. Start the analysis
by running OSACA and specify your target hardware with -arch. You will
receive a light-speed throughput prediction showing a perfect scheduling
based on the machine model, the critical path (CP) of your code, and all
loop-carried dependencies (LCD). As a rule of thumb for steady-state loop
kernels, the runtime prediction is the maximum of the most-occupied port
and the LCD. Furthermore, you can generate a .dot graph file to visualize
your dependencies in your assembly loop.

Platform support

The CLI runs under any platform with a Python 3 installation. OSACA
currently comes with support for various micro-architectures, including

https://godbolt.org/

Intel x86_64 (Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake X,
Cascade Lake X, Ice Lake, Sapphire Rapids), AMD x86_x86 (Zen 1, Zen
2, Zen 3, Zen 4), and ARM AArch64 (Marvell ThunderX2, ARM Neoverse
N1, ARM Cortex A72, Fujitsu A64FX, HiSilicon TaiShan v110, Apple M1,
Neoverse V2/NVIDIA Grace CPU).

License

GNU Affero General Public License v3.0 (AGPL-3.0)

Web page

https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA/wiki
Python ReadTheDocs: https://osaca.readthedocs.io/en/latest/
https://godbolt.org/

Contact

nhr-osaca@fau.de or OSACA Github Issues

Figure 20: OSACA analysis of the Gauss-Seidel method, compiled on and
analyzed for an Intel Ice Lake Server system. The predicted
runtime would be 56 cy per assembly loop.

https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA/wiki
https://osaca.readthedocs.io/en/latest/
https://godbolt.org/
mailto:nhr-osaca@fau.de
https://github.com/RRZE-HPC/OSACA/issues
https://github.com/RRZE-HPC/CLPE-Hands-On/tree/main/GAUSS-SEIDEL

Open|SpeedShopFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Open|SpeedShop is an open source multi platform performance tool that
is targeted to support performance analysis of applications running on
both single nodes and large scale platforms. Open|SpeedShop is explicitly
designed with usability in mind and provides both a comprehensive GUI
as well as a command line interface (CLI). The base functionality includes
sampling experiments, support for callstack analysis, access to hardware
performance counters, tracing and profiling functionality for both MPI and
I/O operations, as well floating point exception analysis. Each of these
functionalities is available as an Experiment that a user can select and
execute on a given target application. Several other experiments, such
as memory analysis and CUDA support, are available in experimental
versions.

Typical questions this tool helps to answer

• In which module, function, loop or statement is my code spending
most of its time (Experiment name: pcsamp)?

• On which call paths were my hotspots reached (Experiment name:
usertime)?

• Which hardware resources cause bottlenecks for my execution (Ex-
periment name: hwcsamp)?

• How do hardware performance counter results, like TLB misses, map
to my source (Experiment name: hwc/hwctime)?

• How much time am I spending in I/O or MPI operations (Experiment
name: io/iot and mpi/mpit)?

Workflow

Open|SpeedShop can be applied to any sequential or parallel target ap-
plication in binary form. To get finer grained attribution of performance
to individual statements, it is recommended to apply the tool to codes
compiled with -g, although this is not a requirement. The user picks an
experiment (starting with the simple sampling experiment pcsamp is typi-
cally a good idea) and prepends the execution of the code (incl. MPI job
launcher) with an Open|SpeedShop launch script for that experiment.

For example, if the target application is typically launched with:
mpirun -np 128 a.out

launching it with the pcsamp experiment would be:
osspcsamp "mpirun -np 128 a.out"

At the end of the execution, the tool provides a first overview of the
observed performance and then creates a database with all performance
data included, which can viewed in the Open|SpeedShop GUI:
openss -f <database-filename.openss>

Platform support

Linux x86_64 workstations and clusters, IBM Blue Gene, and Cray.

License

Open|SpeedShop is available under LGPL (main tool routine: GPL).

Web page

http://www.openspeedshop.org/

Contact

oss-questions@krellinst.org

Figure 21: GUI showing the results of a sampling experiment (left: time per
statement, right: information mapped to source)

http://www.openspeedshop.org/
mailto:oss-questions@krellinst.org

OTF-CPTFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

OTF-CPT collects an application’s critical path and various metrics during
execution (on the fly). Upon completion, it generates a performance report
in the form of model factors, also known as fundamental performance
factors. OTF-CPT supports MPI, OpenMP, and hybrid MPI+OpenMP parallel
programming paradigms. After conducting a series of scaling experiments,
the tool can offer new insights into the scaling behavior of the parallel
application.

Typical questions OTF-CPT helps to answer

• My hybrid MPI + OpenMP application spends 80% of the time in
OpenMP barriers. Is this cased by inefficient use of OpenMP or caused
by MPI communication?

• According to Amdahl’s law, my parallel efficiency is only 30%. What
is the cause of this inefficency?

Workflow

Execute the application with OTF-CPT:

mpirun -np 4 env OMP_NUM_THREADS=4 LD_PRELOAD=libOTFCPT.so \
OMP_TOOL_LIBRARIES=libOTFCPT.so ./app

Platform support

Depends on OMPT support, so no gcc

License

Apache License 2.0 (LLVM)

Web page

https://github.com/RWTH-HPC/OTF-CPT

Contact

jenke@itc.rwth-aachen.de

https://github.com/RWTH-HPC/OTF-CPT?tab=readme-ov-file#on-the-fly-critical-path-tool
mailto:jenke@itc.rwth-aachen.de

81.4 68.3 52.6 30.7 15.9
97.6 95.9 94.6 91.9 88.3
83.3 71.2 55.6 33.4 18.0
84.6 76.0 65.5 54.1 43.8
98.4 93.8 84.8 61.7 41.2
83.5 69.7 53.4 32.4 17.3
98.7 96.9 95.3 93.0 90.3
84.6 72.0 56.1 34.9 19.1
85.9 76.7 66.1 56.5 46.4
98.5 93.8 84.9 61.8 41.2
97.5 97.9 98.4 94.7 92.1
98.9 98.9 99.3 98.9 97.7
98.5 99.0 99.1 95.7 94.3
98.6 99.0 99.2 95.8 94.3
100.0 100.0 99.9 99.9 100.0

#ranks x #threads
Parallel Efficiency
 Load Balance
 Communication Efficiency
 Serialisation Efficiency
 Transfer Efficiency
 MPI Parallel Efficiency
 MPI Load Balance
 MPI Communication Efficiency
 MPI Serialisation Efficiency
 MPI Transfer Efficiency
 OMP Parallel Efficiency
 OMP Load Balance
 OMP Communication Efficiency
 OMP Serialisation Efficiency
 OMP Transfer Efficiency

64x12 128x12 256x12 512x12 1024x12

0.0

0.2

0.4

0.6

0.8

1.0

Figure 22: Breakdown of performance model factors for a hybrid MPI +
OpenMP application.

64x12 128x12 256x12 512x12 1024x12
#ranks x #threads

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Hybrid breakdown

64x12 128x12 256x12 512x12 1024x12
#ranks x #threads

0.00
0.25
0.50
0.75
1.00

Ef
fic

ie
nc

y

OpenMP breakdown

64x12 128x12 256x12 512x12 1024x12
Number of MPI ranks

0.00
0.25
0.50
0.75
1.00

Ef
fic

ie
nc

y

MPI breakdown

64x12 128x12 256x12 512x12 1024x12
Number of MPI ranks

0

20

40

ru
nt

im
e

in
 s

TEomp

TEmpi

SerEomp

SerEmpi

LBomp

LBmpi

PE

Figure 23: Plot of the data shown in Figure 22

PAPIFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Parallel application performance analysis tools on large scale computing
systems typically rely on hardware counters to gather performance data.
The PAPI performance monitoring library provides tool designers and appli-
cation engineers with a common and coherent interface to the hardware
performance counters (available on all modern CPUs) and other hardware
components of interest (e.g., GPUs, network, and I/O systems). PAPI of-
fers its features through an API that can be integrated into C/C++/Fortran
applications, a Python API, and a set of command line utilities.

Typical questions PAPI helps to answer

• What is the relation between software performance and hardware
events?

• What are the number of cache misses, floating-point operations,
executed cycles, etc. of the routines, loops in my application?

• How much data is sent over the network? How much data originates
from a node and how much is passed through a node?

• What is the system’s power usage and energy consumption when my
application is executed?

• How can the internal behavior of my software be exported to third
party developers?

• What type of hardware is available on my platform?

Workflow

While PAPI can be used as a stand-alone tool, it is more commonly applied
as a middleware by third-party profiling, tracing as well as sampling tools
(e.g., CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir), making it a de
facto standard for hardware counter analysis.

The events that can be monitored involve a wide range of performance-
relevant architectural features: cache misses, floating point operations,
retired instructions, executed cycles, and many others. By tightly coupling
PAPI with the tool infrastructure, pervasive performance measurement
capability - including accessing hardware counters, power and energy
measurements, and data transfers, at either the hardware or software
library level - can be made available.

Platform support

• AMD up to Zen5 and power
• AMD GPUs up to MI250x (beta support for MI300), power, temperature, fan
• ARM Cortex, ARM64, uncore support
• Cray Slingshot, Gemini, and Aries interconnects, power/energy
• Fujitsu K Computer
• IBM Blue Gene Series (5D-Torus, I/O system, CNK, EMON power)
• IBM Power Series, Nest-events through PCP, power monitoring and capping
• Intel up to Sapphire Rapids, AlderLake, RaptorLake, RAPL (power/energy), power capping
• Intel GPUs
• Nvidia up to Ampere, Hopper, multi-GPU, NVLink, NVML (power/energy), power capping

License

BSD 3-Clause License

Web page

https://icl.utk.edu/papi
https://github.com/icl-utk-edu/papi

Contact

ptools-perfapi@icl.utk.edu

https://icl.utk.edu/papi
https://github.com/icl-utk-edu/papi
mailto:ptools-perfapi@icl.utk.edu

ParaverFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

Paraver is a performance analyzer based on event traces with a great
flexibility to explore the collected data, supporting a detailed analysis of
the variability and distribution of multiple metrics with the objective of
understanding the application’s behavior. Paraver has two main views: The
timeline view displays the application behavior over time, while the statis-
tics view (histograms, profiles) complements the analysis with distribution
of metrics. To facilitate extracting insight from detailed performance data,
during the last years new modules introduce additional performance ana-
lytics techniques: clustering, tracking and folding allow the performance
analyst to identify the program structure, study its evolution and look at
the internal structure of the computation phases. The tool has been demon-
strated to be very useful for performance analysis studies, with unique
features that reveal profound details about an application’s behavior and
performance.

Typical questions Paraver helps to answer

• How well does the parallel program perform and how does the behav-
ior change over time?

• What is the parallelization efficiency and the effect of communication?

• What differences can be observed between two executions?

• Are performance or workload variations the cause of load imbalances
in computation?

• Which performance issues are reflected by hardware counters?

Workflow

The basis of an analysis with Paraver is a measurement of the application
execution with its performance monitor Extrae. After opening the resulting
trace file in Paraver the user can select from a subset of introductory
analysis views that are hinted by the tool based on the recorded metrics.
These basic views allow an easy overview of the application behavior.
Next to that, Paraver includes a multitude of predefined views enabling
a deeper analysis. Furthermore, Paraver offers a very flexible way to
combine multiple views, so as to generate new representations of the data
and more complex derived metrics. Once a desired view is obtained, it can
be stored in a configuration file to apply it again to the same trace or to a
different one.

Platform support

Linux (x86/x86_64, ARM, Power), SGI Altix, Fujitsu FX10/100, Cray XT, IBM
Blue Gene, Intel Xeon Phi, Windows, macOS

License

GNU Lesser General Public License (LGPL) v2.1

Web page

http://tools.bsc.es/paraver

Contact

tools@bsc.es

Figure 24 shows a histogram of the computation phases colored by the
clustering tool. Small durations are located in the left of the picture, and
large durations on the right. The variability between the cells that have the
same color indicate variance on the duration that would be paid as waiting
time within MPI. We can see that the larger computing region (light green
on the right) is the one with larger imbalance.

Figure 24: Paraver histogram of the computation phases colored with the
cluster ID.

http://tools.bsc.es/paraver
mailto:tools@bsc.es

Scalasca Trace ToolsFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Scalasca Trace Tools support performance optimization of parallel
programs with a collection of highly scalable trace-based tools for in-depth
analyses of concurrent behavior. The Scalasca tools have been specifi-
cally designed for use on large-scale systems such as the IBM Blue Gene
series and Cray XT and successors, but is also well suited for small- and
medium-scale HPC platforms. The automatic analysis identifies potential
performance bottlenecks – in particular those concerning communication
and synchronization – and offers guidance in exploring their causes.

Typical questions the Scalasca Trace Tools help to answer

• Which call-paths in my program consume most of the time?

• Why is the time spent in communication or synchronization higher
than expected?

• For which program activities will optimization prove worthwhile?

• Does my program suffer from load imbalance and why?

Workflow

Before any Scalasca analysis can be carried out, an execution trace of the
target application needs to be collected. For this task, Scalasca leverages
the community-driven instrumentation and measurement infrastructure
Score-P. After an optimized measurement configuration has been prepared
based on initial profiles, a targeted event trace in OTF2 format can be
generated, and subsequently analyzed by Scalasca’s automatic event
trace analyzer after measurement is complete. This scalable analysis
searches for inefficiency patterns and wait states, identifies their root
causes (i.e., delays) also along far-reaching cause-effect chains, collects
statistics about the detected wait-state instances, and determines a profile
of the application’s critical path. The result can then be examined using
the interactive analysis report explorer Cube.

Platform support

Continoulsy tested on: HPE Cray XC and EX, various Linux (Intel, AMD, IBM,
ARM) clusters with GNU, Intel, NVIDIA, IBM, and AMD compilers.
Previously tested on: Intel Xeon Phi (KNL), IBM Blue Gene/Q, Cray XT/XE/XK,
Fujitsu FX systems

License

BSD 3-Clause License

Web page

https://www.scalasca.org

Contact

scalasca@fz-juelich.de

Figure 25 shows part of a time-line of events from three processes,
exemplifying results of the Scalasca trace analyzer. First, wait states in
communications and synchronizations are detected, such as the “Late
Sender” wait states in both message transfers (C→A and A→B) due to
receive operations blocked waiting for messages to arrive. Second, the
analysis identifies that the wait state on process A is caused directly by
the excess computation in foo on process C. Besides the extra receive
operation on process A, this imbalance is also identified as a cause for the
wait state on process B through propagation: by inducing the wait state on
process A it is also delaying the following send operation further. Finally,
the analysis determines the critical path of execution (outlined), whose
profile highlights call paths that are good candidates for optimization.

The analyzer quantifies metric severities for each process/thread and
call path, and stores them in an analysis report for examination with Cube.
Additional wait-state instance statistics can be used to direct Paraver
or Vampir trace visualization tools to show and examine the severest
instances.

time

pr
oc

es
se

s

A

B

C

foo bar foobar

foo bar foobar

foo bar foobar

Recv

Recv

Send

Send

waiting time

waiting time

Figure 25: Scalasca automatic trace analysis identification of time in
message-passing wait states and on the critical path.

https://www.scalasca.org
mailto:scalasca@fz-juelich.de

Score-PFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Score-P measurement infrastructure is a highly scalable and easy-to-
use tool suite for profiling and event tracing. It supports a wide range of HPC
platforms and programming models. Score-P provides core measurement
services for a range of specialized analysis tools, such as Vampir, Scalasca,
TAU, or Extra-P.

Typical questions Score-P helps to answer

• Which call-paths in my program consume most of the time?

• How much time is spent in communication or synchronization?

Further analysis tools can also be employed on Score-P measurements.

Workflow

1. Preparation. To create measurements, the target program must be in-
strumented. Score-P offers various instrumentation options, including
automatic compiler instrumentation or manual source-code instru-
mentation. As an alternative to automatic compiler instrumentation,
events can be generated using a sampling approach.

2. Measurement. The instrumented program can be configured to record
an event trace or produce a call-path profile. Optionally, PAPI, rusage,
and perf hardware metrics can be recorded. Filtering techniques
allow precise control over the amount of data to be collected.

3. Analysis. Call-path profiles can be examined in TAU or the Cube profile
browser and serve as Extra-P input. Event traces can be examined in
Vampir or used for automatic bottleneck analysis with Scalasca.

Platform support

Continoulsy tested on HPE Cray EX, various Linux (Intel, AMD, ARM) clusters
with GNU, Intel, NVIDIA, IBM, AMD, and Clang compilers. Successful RISC-V
QEMU build with GNU compilers. Previously tested on Intel Xeon Phi, IBM
Blue Gene/Q, Cray XT/XE/XK/XC, and Fujitsu FX systems.

License

BSD 3-Clause License

Web page

https://score-p.org
Python bindings: https://github.com/score-p/scorep_binding_python

Contact

support@score-p.org

Figure 26 is an overview of the Score-P instrumentation and measure-
ment infrastructure and the analysing tools from the VI-HPS ecosystem.
Supported programming models and other event sources are modularized
at the lowest level. Score-P instruments the application at build time with
the necessary code to perform the measurement. Measurement mode and
any external sources such as PAPI are specified at runtime. The perfor-
mance data is stored for postmortem analysis in the open data formats
CUBE4 for call-path profiles and OTF2 for event traces. Multiple analysis
tools can then work on the same data from a single measurement run.

Application

Vampir Scalasca TAU

Accelerator-based
parallelism

(CUDA, HIP, OpenACC,
OpenCL, OpenMP,

Kokkos)

 Score-P measurement infrastructure

Event traces
 (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism
(OpenMP,
Pthreads)

Source code
instrumentation
(Compiler, PDT,

User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

I/O Activity
Recording
(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

Figure 26: Overview of Score-P, produced dataformats, and analysing tools.

https://score-p.org
https://github.com/score-p/scorep_binding_python
mailto:support@score-p.org

STAT — The Stack Trace Analysis ToolFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Stack Trace Analysis Tool gathers and merges stack traces from
all processes of a parallel application. The tool produces call graphs: 2D
spatial and 3D spatial-temporal; the graphs encode calling behavior of
the application processes in the form of a prefix tree. The 2D spatial call
prefix tree represents a single snapshot of the entire application. The 3D
spatial-temporal call prefix tree represents a series of snapshots from the
application taken over time (see Figure 27). In these graphs, the nodes
are labeled by function names. The directed edges, showing the calling
sequence from caller to callee, are labeled by the set of tasks that follow
that call path. Nodes that are visited by the same set of tasks are assigned
the same color, giving a visual reference to the various equivalence classes.

Typical questions STAT helps to answer

• Where is my code stuck?

• Which processes have similar behavior?

• Where do I need to start debugging?

Workflow

STAT comes with its own GUI, invoked with the stat-gui command. Once
launched, this GUI can be used to select the application to debug (in the
context of MPI applications typically the job launch process, i.e., mpirun
or equivalent). STAT will then attach to the target application processes,
gather the stack traces and display them within the GUI for analysis.

Platform support

Linux x86_64 workstations and clusters, IBM Blue Gene, and Cray XT/XE/XK.

License

BSD

Web page

http://www.paradyn.org/STAT/STAT.html

Contact

Greg Lee, LLNL (lee218@llnl.gov)

Figure 27 shows a call prefix tree generated by STAT from a sample MPI
application which is stalled. At a high-level (before MPI internals), the
code has three groups of processes: rank 1 in do_SendOrStall, rank 2 in
MPI_Waitall, and the other 4094 processes in MPI_Barrier. Using this
information it is sufficient to apply a debugger only to one representative
process from each group in order to be able to investigate this problem.

Figure 27: STAT 3D spatial-temporal call prefix tree of stalled execution.

http://www.paradyn.org/STAT/STAT.html
mailto:lee218@llnl.gov

TAUFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

TAU is a comprehensive profiling and tracing toolkit that supports perfor-
mance evaluation of programs written in C++, C, UPC, Fortran, Python, and
Java. It is a robust, flexible, portable, and integrated framework and toolset
for performance instrumentation, measurement, debugging, analysis, and
visualization of large-scale parallel computer systems and applications.
TAU supports both direct measurement as well as sampling modes of in-
strumentation and interfaces with external packages such as Score-P, PAPI,
Scalasca, and Vampir.

Typical questions TAU helps to answer

• Which routines, loops, and statements in my program consume most
of the time?

• Where are the memory leaks in my code and where does my program
violate array bounds at runtime?

• What is the extent of I/O and what is the bandwidth of I/O operations?

• What is the performance of kernels that execute on accelerators such
as GPUs and Intel Xeon co-processors (MIC).

• What is the extent of variation of the power and heap memory usage
in my code? When and where does it show extremes?

Workflow

TAU allows the user to instrument the program in a variety of ways in-
cluding rewriting the binary using tau_rewrite or runtime pre-loading of
shared objects using tau_exec. Source level instrumentation typically in-
volves substituting a compiler in the build process with a TAU compiler
wrapper. This wrapper uses a given TAU configuration to link in the TAU
library. At runtime, a user may specify different TAU environment variables
to control the measurement options chosen for the performance experi-
ment. This allows the user to generate callpath profiles, specify hardware
performance counters, turn on event based sampling, generate traces, or
specify memory instrumentation options.

Performance-analysis results may be stored in TAUdb, a database for
cross-experiment analysis and advanced performance data mining oper-
ations using TAU’s PerfExplorer tool. It may be visualized using ParaProf,
TAU’s 3D profile browser that can show the extent of performance variation
and compare executions.

Supported platforms

IBM Blue Gene P/Q, NVIDIA and AMD GPUs and Intel MIC systems, Cray
XE/XK/XC30, SGI Altix, Fujitsu K Computer (FX10), NEC SX-9, Solaris & Linux
clusters (x86/x86_64,MIPS,ARM), Windows, macOS.

Supported Runtime Layers

MPI, OpenMP (using GOMP, OMPT, and Opari instrumentation), Pthread,
MPC Threads, Java Threads, Windows Threads, SHMEM, CUDA, OpenCL,
OpenACC, ROCm.

License

BSD style license

Web page

http://tau.uoregon.edu

Contact

tau-bugs@cs.uoregon.edu

Figure 28 below shows a 3D profile of the IRMHD application that shows
the extent of variation of the execution time over 2048 ranks. Notice the
shape of the MPI_Barrier profile.

Figure 28: TAU’s ParaProf 3D profile browser shows the exclusive time spent
(height, color) over ranks for all routines in a code.

http://tau.uoregon.edu
mailto:tau-bugs@cs.uoregon.edu

VampirFocus

single

parallel

perform

debug

correct

workflow

Prog. model

MPI

OpenMP

Pthreads

OmpSs

CUDA

HIP

OpenCL

OpenACC

UPC

SHMEM

GASPI

Language

C

C++

Fortran

Python

Processor

x86

Power

ARM

GPU

The Vampir performance visualizer allows to quickly study a program’s
runtime behavior at a fine level of detail. This includes the display of de-
tailed performance event recordings over time in timelines and aggregated
profiles. Interactive navigation and zooming are the key features of the
tool, which help to quickly identify inefficient or faulty parts of a program.
Vampir is language independent. It supports 4 input formats, allowing
it to work with many measurement systems. Vampir works closely with
Score-P, part of the VI-HPS ecosystem, which generates Open Trace Format
Version 2 (OTF2) traces. The older OTF format is also supported for back-
wards compatibility. Vampir also supports the JSON-based Chrome Trace
Event format, which is produced by many tools both inside and outside the
HPC community for application tracing, and the WfCommons format for
workflow execution traces.

Typical questions Vampir helps to answer

• How well does my program make progress over time?

• When/where does my program suffer from load imbalances and why?

• Why is the time spent in communication or synchronization higher
than expected?

• Are I/O operations delaying my program?

• Does my hybrid program interplay well with the given accelerator?

Workflow

Before using Vampir, an application program needs to be instrumented
and executed with Score-P. Running the instrumented program produces a
bundle of trace files in OTF2-format with an anchor file called traces.otf2.
When opening the anchor file with Vampir, a timeline thumbnail of the
data is presented. This thumbnail allows to select a subset or the total
data volume for a detailed inspection. The program behavior over time
is presented to the user in an interactive chart called Master Timeline.
Further charts with different analysis focus can be added.

Platform support

Linux (x86/x86_64, ARM, Power), Windows, Apple macOS.

License

Commercial

Web page

https://vampir.eu

Contact

service@vampir.eu

Figure 29: A trace file in the Vampir performance browser.

After a trace file has been loaded by Vampir, the Trace View window opens
with a default set of charts as depicted in Figure 29. The charts can
be divided into timeline charts and statistical charts. Timeline charts
(left) show detailed event based information for arbitrary time intervals
while statistical charts (right) reveal accumulated measures which were
computed from the corresponding event data. An overview of the phases
of the entire program run is given in the Zoom Toolbar (top right), which
can also be used to zoom and shift to the program phases of interest.

https://vampir.eu
mailto:service@vampir.eu

VI-HPS training

Next to the development of state-of-the-art productivity tools for high-
performance computing, the VI-HPS also provides training in the effective
application of these tools. Workshops and tutorials are orchestrated in
close collaboration of the host organization to fit the particular need of the
audience.

Training events can be a tuning workshop, a custom workshop or course,
or a tutorial conducted in collaboration with an HPC-related conference.
Sign up to the VI-HPS news mailing list via our website to receive announce-
ments of upcoming training events.

Tuning workshop series VI-HPS Tuning Workshops are the major train-
ing vehicle where up to 30 participants receive instruction and guidance
applying VI-HPS tools to their own parallel application codes, along with
advice for potential corrections and optimizations. Feedback to tools devel-
opers also helps direct tools development to user needs, as well as improve
tool documentation and ease of use. These workshops of three to five
days at HPC centres occur several times per year, and feature a variety of
VI-HPS tools.

Other training events VI-HPS Tuning Workshops are complemented
by additional courses and tutorials at conferences, seasonal schools and
other invited training events which have taken place on four continents.
Training events of individual VI-HPS partners can also be found on their
own websites.

Course material Coordinated tools training material is available with
emphasis on hands-on exercises using VI-HPS tools individually and inter-
operably. Exercises with example MPI+OpenMP parallel applications can
be configured to run on dedicated HPC compute resources or within the
virtual environment provided by a free Linux Live ISO that can be booted
and run on an x86_64 notebook or desktop computer.

Linux Live-ISO The downloadable VI-HPS Linux Live-ISO image provides
a typical HPC development environment for MPI and OpenMP containing
the VI-HPS tools. Once booted, the running system provides the GNU
Compiler Collection (including support for OpenMP multithreading) and
OpenMPI message-passing library, along with a variety of parallel debug-
ging, correctness checking and performance analysis tools.

The latest ISO/OVA files are currently only available as 64-bit versions,
requiring a 64-bit x86-based processor and a 64-bit OS if running a vir-
tual machine. Depending on available memory, it should be possible to
apply the provided tools and run small-scale parallel programs (e.g., 16
MPI processes or OpenMP threads). When the available processors are
over-subscribed, however, measured execution performance will not be
representative of dedicated HPC compute resources. Sample measure-
ments and analyses of example and real applications from a variety of HPC
systems (many at large scale) are therefore provided for examination and
investigation of actual execution performance issues.

Figure 30: VI-HPS Tuning Workshop locations (2008–2024).

VI-HPS Tools Guide

The Virtual Institute – High Productivity Supercomputing (VI-HPS) aims
at improving the quality and accelerating the development process of
complex simulation codes in science and engineering that are being
designed to run on highly-parallel HPC computer systems. For this
purpose, the partners of VI-HPS are developing integrated state-of-
the-art programming tools for high-performance computing that as-
sist programmers in diagnosing programming errors and optimizing
the performance of their applications.

This VI-HPS Tools Guide provides a brief overview of the technologies
and tools developed by the 17 partner institutions of the VI-HPS. It is
intended to assist developers of simulation codes in deciding which of
the tools of the VI-HPS portfolio is best suited to address their needs
with respect to debugging, correctness checking, and performance
analysis.

www.vi-hps.org | info@vi-hps.org

