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Program Instrumentation 

• Detect run-time events (points of interest) 

• Pass information to run-time measurement library 

Profile Recording 

• Collect aggregated information (Time, Counts, …) 

• About program and system entities 

• functions, loops, basic blocks per process/thread 

Trace Recording 

• Individual event records 

• Precise time stamp, process/thread ID 

• Event specific information 

Introduction: Profiling & Tracing 



Trace Visualization 

• Alternative and supplement to automatic analysis 

• Show dynamic run-time behavior visually 

• Provide statistics and performance metrics 

• global timeline for parallel processes/threads 

• process timeline plus performance counters 

• statistic summary display 

• communication statistics, more … 

• Interactive browsing, zooming, selecting 

• adapt statistics to zoom level (time interval) 

• also for very large and highly parallel traces 

Event Trace Visualization 



Scalable parallel Vampir visualization architecture 

Vampir Toolset Architecture 
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The main displays of Vampir: 

• Master Timeline 

• Process and Counter Timeline 

• Function Summary 

• Message Summary 

• Process Summary 

• Communication Matrix 

• Call Tree 

Vampir Displays 



Vampir 7 Display Overview 
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GPU Tracing (CUDA) 

• Full support for GPGPU computing, CUDA and OpenCL 

• Shows Kernel invocations, idle time, and DMA transfers 



MPI + CUDA Tracing 

• Support for hybrid modes: GPGPU + MPI + threads 
– Function invocations in host processes (Process X) and threads 

– Kernel invocations in CUDA threads (Thread x/y) 

– Host-GPU interactions via CUDA API (light arrows) 

– Host-Host interactions via MPI (bold arrows) 

 

 

 



MPI + CUDA + Pthreads 

• Details about kernel invocations 

• Derived counter values, e.g. about GPU execution rate 



• Currently no scalability limits provided enough 

analysis processes and enough distributed memory 

• Full-scale ORNL Jaguar trace opened with 20,000 

VampirServer analysis processes 

• Vampir  find ways to show that much data 

Vampir Scalability 



 

 

• Compact timelines (Fit to chart height)  

• In master timeline and performance radar 

• Visualization of more processes than vertical pixels 

• Clustering 

• Allows detection of groups with similar behavior and 
outliere 

• Performance radar 

• Highlighting performance conditions in a global timeline 

Scalability Features in Vampir GUI 



Scalability Feature I: Fit to chart height 

Pflotran initialization + I/O 



Scalability feature II: Clustering 

Pflotran - first iteration 



Scalability feature II: Clustering 

Pflotran – end of initialization & first iteration 



• Identification of relevant 
spots with a heat map 

 

• Performance counters 
and properties derived 
from trace events 

 

• Arithmetics on counter 
data and event 
properties 

 

 

 

 

Scalability Feature III: Performance Radar 



Scalability Feature III: Performance Radar 

• Easily reveals 
where given 
functions occur, 
e.g. MPI_Barrier 

 

• Shows density of 
function calls 

 

 

 

 



Scalability Feature III: Performance Radar 

• Allows global 
sum over all 
processes, ranks 
and threads 

 

 

 

 



Scalability Example: 200,000+ Processes in 
Vampir 
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Vampir trace visualization 

• several displays with many options 

• identify essential parts of an application (initialization, 
main iteration, I/O, finalization) 

• identify important components of the code (serial 
computation, MPI P2P, collective MPI, OpenMP) 

• make a hypothesis about performance problems 

• consider application's internal workings if known 

• select the appropriate displays 

• use statistic displays in conjunction with timelines 

Finding Bottlenecks 



• Communication as such  
(dominating over computation) 

• Late sender, late receiver 

• Point-to-point messages instead of  
collective communication 

• Unmatched messages 

• Overcharge of MPI’s buffers 

• Bursts of large messages (bandwidth) 

• Frequent short messages (latency) 

• Unnecessary synchronization (barrier) 

• The above usually result in a high MPI time share 

Bottlenecks in Communication 



Too much runtime share for MPI all-together  

Bottlenecks in Communication: Example 1 

Prevalent communication 



Long bursts of MPI_AllReduce operations 

Bottlenecks in Communication: Example 2 



Long bursts of MPI_AllReduce operations  
 

Replace by NBC  
non-blocking  
allreduce + wait 

Bottlenecks in Communication: Example 2 



Long bursts of MPI_AllReduce operations  

 

Replace by NBC  
non-blocking  
allreduce + wait 

 

(zoom) 

Bottlenecks in Communication : Example 2 



Bottlenecks in Communication: Example 3 

Chains  
of MPI 
Sendrecv 
replace 

 



Bottlenecks in Communication: Example 3 

Chains  
of MPI 
Sendrecv 
replace 
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Propagate 
delays over 
successive 
MPI ranks 



Bottlenecks in Communication: Example 3 

Chains  
of MPI 
Sendrecv_ 
replace 

 

Replace by 
faster over-
lapping 
series of 
Send, Irecv, 
and Waitall 



Bottlenecks in Communication: Example 3 

Chains  
of MPI 
Sendrecv_ 
replace 

 

Replace by 
faster over-
lapping 
series of 
Send, Irecv, 
and Waitall 
(zoom) 



Bottlenecks in Communication: Example 4 

Many MPI 
barriers are 
unneeded 



Bottlenecks in Communication: Example 4 

Many MPI 
barriers are 
unneeded 
 

Remove 
barriers if 
possible, 
following 
operations 
start less 
regular but 
are faster. 



• Unbalanced computation (single late comer) 

• Strictly serial parts of program (idle threads) 

• Frequent tiny function calls, sparse loops 

• Memory bound computation 

• Inefficient L1/L2/L3 cache usage, TLB misses 

• Detectable via HW performance counters 

• I/O bound computation 

• Slow input/output, sequential I/O 

• I/O load imbalance 

• Exception handling 

Bottlenecks in Computation 



Bottlenecks in Computation: Example 1 

Mostly idle 
OpenMP 
threads 

 

Low parallel 
efficiency 



Bottlenecks in Computation: Example 1 

Mostly idle 
OpenMP 
threads 

 

Low parallel 
efficiency 

 

(zoom) 



Bottlenecks in Computation: Example 2 

High rate of 
FPop/s with 
low rate of  
L3 cache 
misses  
 
vs. 
  
low FPop/s 
rate due to 
a high L3 
miss rate. 
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Vampir and VampirTrace are  

available at http://www.vampir.eu and 

 http://www.tu-dresden.de/zih/vampirtrace/ , 

support via vampirsupport@zih.tu-dresden.de 


