
Event Tracing with VAMPIR

Ventsislav Petkov

Technische Universität München

petkovve@in.tum.de

• Introduction

• Vampir Displays

• Advanced topics

• GPU Support

• Scalability

• Finding Performance Bottlenecks

• Conclusion & Outlook

Overview

Program Instrumentation

• Detect run-time events (points of interest)

• Pass information to run-time measurement library

Profile Recording

• Collect aggregated information (Time, Counts, …)

• About program and system entities

• functions, loops, basic blocks per process/thread

Trace Recording

• Individual event records

• Precise time stamp, process/thread ID

• Event specific information

Introduction: Profiling & Tracing

Trace Visualization

• Alternative and supplement to automatic analysis

• Show dynamic run-time behavior visually

• Provide statistics and performance metrics

• global timeline for parallel processes/threads

• process timeline plus performance counters

• statistic summary display

• communication statistics, more …

• Interactive browsing, zooming, selecting

• adapt statistics to zoom level (time interval)

• also for very large and highly parallel traces

Event Trace Visualization

Scalable parallel Vampir visualization architecture

Vampir Toolset Architecture

Vampir
Trace

Vampir
Trace

Trace
File

(OTF)

Vampir 7

Trace
Bundle

VampirServer

CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core
Program

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

• Introduction

• Vampir Displays

• Advanced topics

• GPU Support
• Scalability

• Finding Performance Bottlenecks

• Conclusion & Outlook

Overview

The main displays of Vampir:

• Master Timeline

• Process and Counter Timeline

• Function Summary

• Message Summary

• Process Summary

• Communication Matrix

• Call Tree

Vampir Displays

Vampir 7 Display Overview

 Master Timeline

Master
Timeline

 Process and Counter Timelines

Process
Timeline

Counter
Timeline

Function Summary

Function
Summary

Message Summary

Process Summary

Process
Summary

Communication Matrix

Communication
Matrix

Call Tree

• Introduction

• Vampir Displays

• Advanced topics

• GPU Support
• Scalability

• Finding Performance Bottlenecks

• Conclusion & Outlook

Overview

GPU Tracing (CUDA)

• Full support for GPGPU computing, CUDA and OpenCL

• Shows Kernel invocations, idle time, and DMA transfers

MPI + CUDA Tracing

• Support for hybrid modes: GPGPU + MPI + threads
– Function invocations in host processes (Process X) and threads

– Kernel invocations in CUDA threads (Thread x/y)

– Host-GPU interactions via CUDA API (light arrows)

– Host-Host interactions via MPI (bold arrows)

MPI + CUDA + Pthreads

• Details about kernel invocations

• Derived counter values, e.g. about GPU execution rate

• Currently no scalability limits provided enough

analysis processes and enough distributed memory

• Full-scale ORNL Jaguar trace opened with 20,000

VampirServer analysis processes

• Vampir  find ways to show that much data

Vampir Scalability

• Compact timelines (Fit to chart height)

• In master timeline and performance radar

• Visualization of more processes than vertical pixels

• Clustering

• Allows detection of groups with similar behavior and
outliere

• Performance radar

• Highlighting performance conditions in a global timeline

Scalability Features in Vampir GUI

Scalability Feature I: Fit to chart height

Pflotran initialization + I/O

Scalability feature II: Clustering

Pflotran - first iteration

Scalability feature II: Clustering

Pflotran – end of initialization & first iteration

• Identification of relevant
spots with a heat map

• Performance counters
and properties derived
from trace events

• Arithmetics on counter
data and event
properties

Scalability Feature III: Performance Radar

Scalability Feature III: Performance Radar

• Easily reveals
where given
functions occur,
e.g. MPI_Barrier

• Shows density of
function calls

Scalability Feature III: Performance Radar

• Allows global
sum over all
processes, ranks
and threads

Scalability Example: 200,000+ Processes in
Vampir

• Introduction

• Vampir Displays

• Advanced topics

• GPU Support
• Scalability

• Finding Performance Bottlenecks

• Conclusion & Outlook

Overview

Vampir trace visualization

• several displays with many options

• identify essential parts of an application (initialization,
main iteration, I/O, finalization)

• identify important components of the code (serial
computation, MPI P2P, collective MPI, OpenMP)

• make a hypothesis about performance problems

• consider application's internal workings if known

• select the appropriate displays

• use statistic displays in conjunction with timelines

Finding Bottlenecks

• Communication as such
(dominating over computation)

• Late sender, late receiver

• Point-to-point messages instead of
collective communication

• Unmatched messages

• Overcharge of MPI’s buffers

• Bursts of large messages (bandwidth)

• Frequent short messages (latency)

• Unnecessary synchronization (barrier)

• The above usually result in a high MPI time share

Bottlenecks in Communication

Too much runtime share for MPI all-together

Bottlenecks in Communication: Example 1

Prevalent communication

Long bursts of MPI_AllReduce operations

Bottlenecks in Communication: Example 2

Long bursts of MPI_AllReduce operations


Replace by NBC
non-blocking
allreduce + wait

Bottlenecks in Communication: Example 2

Long bursts of MPI_AllReduce operations



Replace by NBC
non-blocking
allreduce + wait

(zoom)

Bottlenecks in Communication : Example 2

Bottlenecks in Communication: Example 3

Chains
of MPI
Sendrecv
replace

Bottlenecks in Communication: Example 3

Chains
of MPI
Sendrecv
replace

(zoom)

Propagate
delays over
successive
MPI ranks

Bottlenecks in Communication: Example 3

Chains
of MPI
Sendrecv_
replace



Replace by
faster over-
lapping
series of
Send, Irecv,
and Waitall

Bottlenecks in Communication: Example 3

Chains
of MPI
Sendrecv_
replace



Replace by
faster over-
lapping
series of
Send, Irecv,
and Waitall
(zoom)

Bottlenecks in Communication: Example 4

Many MPI
barriers are
unneeded

Bottlenecks in Communication: Example 4

Many MPI
barriers are
unneeded


Remove
barriers if
possible,
following
operations
start less
regular but
are faster.

• Unbalanced computation (single late comer)

• Strictly serial parts of program (idle threads)

• Frequent tiny function calls, sparse loops

• Memory bound computation

• Inefficient L1/L2/L3 cache usage, TLB misses

• Detectable via HW performance counters

• I/O bound computation

• Slow input/output, sequential I/O

• I/O load imbalance

• Exception handling

Bottlenecks in Computation

Bottlenecks in Computation: Example 1

Mostly idle
OpenMP
threads



Low parallel
efficiency

Bottlenecks in Computation: Example 1

Mostly idle
OpenMP
threads



Low parallel
efficiency

(zoom)

Bottlenecks in Computation: Example 2

High rate of
FPop/s with
low rate of
L3 cache
misses

vs.

low FPop/s
rate due to
a high L3
miss rate.

Bottlenecks in Computation: Example 2

High rate of
FPop/s with
low rate of
L3 cache
misses
vs.
low FPop/s
rate due to
a high L3
miss rate.

(zoom)

• Introduction

• Vampir Displays

• Advanced topics

• GPU Support
• Scalability

• Finding Performance Bottlenecks

• Conclusion & Outlook

Overview

 Matthias Jurenz, Andreas Knüpfer, Ronny Brendel, Matthias Lieber,
Jens Doleschal, Jens Domke, Holger Mickler, Daniel Hackenberg,
Michael Heyde, Thomas Ilsche, Guido Juckeland, Robert Dietrich,

Frank Winkler, Michael Kluge, Matthias Müller, Holger Brunst, Ronald
Geisler, Reinhard Neumann, Bert Wesarg, Rene Widera, Thomas

Ilsche, Matthias Weber, Thomas William, Hartmut Mix,

and Wolfgang E. Nagel

Vampir and VampirTrace are

available at http://www.vampir.eu and

 http://www.tu-dresden.de/zih/vampirtrace/ ,

support via vampirsupport@zih.tu-dresden.de

