
14 March 2012

Brian Wylie
Jülich Supercomputing Centre

b.wylie@fz-juelich.de

Virtual Institute –
High Productivity Supercomputing

2

Outline

Wednesday 14th March
■ 09:00 (registration)
■ Welcome & Introduction to VI-HPS [Ávila,Gerndt,Wylie]
■ Introduction to parallel application engineering [Gerndt]
■ Introduction to parallel performance analysis [Oleynik]
■ Preparation for hands-on exercises on levque [Wylie]
■ 11:45-14:30 (lunch)
■ Periscope introduction & overview [Gerndt,Oleynik]
■ PeriscopePeriscope hands-on exercise on levque
■ 15:45-16:00 (break)
■ Scalasca introduction & overview [Wylie]
■ Scalasca hands-on exercise on levque
■ 17:15 (adjourn)

3

Outline (cont.)

Thursday 15th March
■ 09:00
■ Vampir introduction & overview [Petkov]
■ (break)
■ PAPI introduction & overview [Ávila]
■ 12:00-13:30 (lunch)
■ Hands-on coaching with participants' codes on levque [all]
■ 17:00 (adjourn)

Friday 16th March
■ 09:00
■ Sponsor presentations from IBM, Intel & SGI (OmegaSystem)
■ 12:00 (adjourn)

4

Disclaimer

Tools will not automatically make you,
your applications or computer systems

more productive.
However, they can help you understand

how your parallel code executes and
when / where it's necessary to work on
correctness and performance issues.

5

We'd like to know a little about you, your application(s), and
your expectations and desires from this tutorial

● What programming paradigms do you use in your app(s)?
■ only MPI, only OpenMP, mixed-mode/hybrid OpenMP/MPI, ...
■ Fortran, C, C++, multi-language, ...

● What platforms/systems must your app(s) run well on?
■ Cray XT/XE/XK, IBM BlueGene, SGI Altix, Linux cluster™, ...

● Who's already familiar with serial performance analysis?
■ Which tools have you used?

► time, print/printf, prof/gprof, VTune, ...
● Who's already familiar with parallel performance analysis?

■ Which tools have you used?
► time, print/printf, prof/gprof, Periscope, Scalasca, TAU, Vampir, ...

Participant survey

Prepare to analyse your own application codes

● Ensure your application codes build and run to completion
with appropriate datasets
■ initial configuration should ideally run in less than 15 minutes

with 1-4 compute nodes (up to 48 processes/threads)
► to facilitate rapid turnaround and quick experimentation

■ larger/longer scalability configurations are also interesting
► turnaround may be limited due to busyness of batch queues

● Compare your application performance on other systems
■ VI-HPS tools already installed on a number of HPC systems

► if not, ask your system administrator to install them
(or install a personal copy yourself)

Virtual Institute –
High Productivity Supercomputing

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on
highly-parallel computer systems

● Start-up funding (2006-2011)
by Helmholtz Association
of German Research Centres

● Activities
■ Development and integration of HPC programming tools

► Correctness checking & performance analysis
■ Training workshops
■ Service

► Support email lists
► Application engagement

■ Academic workshops

www.vi-hps.org

Forschungszentrum Jülich
■ Jülich Supercomputing Centre

RWTH Aachen University
■ Centre for Computing & Communication

Technical University of Dresden
■ Centre for Information Services & HPC

University of Tennessee (Knoxville)
■ Innovative Computing Laboratory

VI-HPS partners (founders)

German Research School
■ Laboratory of Parallel Programming

Technical University of Munich
■ Chair for Computer Architecture

University of Oregon
■ Performance Research Laboratory

University of Stuttgart
■ HPC Centre

University of Versailles St-Quentin
■ LRC ITACA

VI-HPS partners (cont.)

VI-HPS productivity tools

● Marmot/MUST
■ MPI correctness checking

● PAPI
■ Interfacing to hardware performance counters

● Periscope
■ Automatic analysis via an on-line distributed search

● Scalasca
■ Large-scale parallel performance analysis

● TAU
■ Integrated parallel performance system

● Vampir/VampirTrace
■ Event tracing and graphical trace visualization & analysis

VI-HPS productivity tools (cont.)

● KCachegrind
■ Callgraph-based cache analysis [x86 only]

● MAQAO
■ Assembly instrumentation & optimization [x86 only]

● ompP
■ OpenMP profiling tool

● OpenMPI
■ Memory checking

● Paraver/Extrae
■ Event tracing and graphical trace visualization & analysis

● Score-P
■ Common instrumentation & measurement infrastructure

● SIONlib
■ Optimized native parallel file I/O

Technologies and their integration

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MARMOT / MUST

PERISCOPEKCACHEGRIND

TAU

MAQAOSIONLIB /
OPENMPI

VI-HPS Training & Tuning Workshops

● Goals
■ Give an overview of the programming tools suite
■ Explain the functionality of individual tools
■ Teach how to use the tools effectively
■ Offer hands-on experience and expert assistance using tools
■ Receive feedback from users to guide future development

● For best results, bring & analyse/tune your own code(s)!

● VI-HPS Tutorial series
■ SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11

● VI-HPS Tuning Workshop series
■ 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),

2010 (Garching & Amsterdam), 2011 (Stuttgart & Aachen)
■ 2012/04/23-27 (Paris), 2012/10/15-19 (Garching)

Upcoming VI-HPS training events

● 9th VI-HPS Tuning Workshop (23-27 Apr 2012)
■ hosted by UVSQ, St.-Quentin-en-Yvelines, France
■ using PRACE Tier-0 Curie system at CEA / TGCC
■ Scalasca, Vampir, TAU, Periscope, KCachegrind, MAQAO, ...

● Further events to be determined
■ (one-day) tutorials

► with guided exercises using Live DVD
■ (multi-day) training workshops

► with your own applications on real HPC systems

Check www.vi-hps.org/training for announced events
● Contact us if you might be interested in hosting an event

http://www.vi-hps.org/training

POINT/VI-HPS Live-ISO/DVD

● Bootable Linux installation ISO (on DVD or USB stick)
● Includes everything needed to try out our parallel tools on

an x86-architecture notebook computer
■ VI-HPS tools: KCachegrind, Marmot, PAPI,

Periscope, Scalasca, TAU, VT/Vampir*
■ Also: Eclipse/PTP, TotalView*, etc.

► * time/capability-limited
evaluation licences provided
for commercial products

■ GCC (w/ OpenMP), OpenMPI
■ Manuals/User Guides
■ Tutorial exercises & examples

● Produced by U. Oregon PRL
■ Sameer Shende

Cachegrind: cache analysis by simple cache simulation
■ Captures dynamic callgraph
■ Based on valgrind dynamic binary instrumentation
■ Runs on x86/PowerPC/ARM unmodified binaries

► No root access required
■ ASCII reports produced

[KQ]Cachegrind GUI
■ Visualization of cachegrind output

Developed by TU Munich
■ Released as GPL open-source
■ http://kcachegrind.sf.net/

KCachegrind

Profile

Binary

2-level $ Simulator

Memory
Accesses Event Counters

Debug Info

http://kcachegrind.sf.net/

KCachegrind GUI

Source code view

Machine code
annotation

Event cost tree map

Call graph view

Tool to check for correct MPI usage at runtime
■ Checks conformance to MPI standard

► Supports Fortran & C bindings of MPI-1.2
■ Checks parameters passed to MPI
■ Monitors MPI resource usage

Implementation
■ C++ library gets linked to the application
■ Does not require source code modifications
■ Additional process used as DebugServer
■ Results written in a log file (ASCII/HTML/CUBE)

Developed by HLRS & TU Dresden
■ Released as open-source
■ http://www.hlrs.de/organization/av/amt/projects/marmot

Marmot

http://www.hlrs.de/organization/av/amt/projects/marmot

Marmot logfiles

Next generation MPI runtime error detection tool
■ Successor of the Marmot and Umpire tools
■ Initial merge of Marmot's many local checks with Umpire's

non-local checks
■ Improved scalability expected in future

Developed by TU Dresden, LLNL & LANL
■ to be released as open-source (BSD license)
■ currently in beta-testing for first release in November 2011
■ http://tu-dresden.de/.../must

MUST

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_zur_unterstuetzung_von_programmierung_und_optimierung/must

Portable performance counter library & utilities
■ Configures and accesses hardware/system counters
■ Predefined events derived from available native counters
■ Core component for CPU/processor counters

► instructions, floating point operations, branches predicted/taken,
cache accesses/misses, TLB misses, cycles, stall cycles, …

► performs transparent multiplexing when required
■ Extensible components for off-processor counters

► InfiniBand network, Lustre filesystem, system hardware health, …
■ Used by multi-platform performance measurement tools

► Periscope, Scalasca, TAU, VampirTrace, ...
Developed by UTK-ICL

■ Available as open-source for most modern processors
http://icl.cs.utk.edu/papi/

PAPI

http://icl.cs.utk.edu/papi/

juropa$ papi_avail
Available events and hardware information.

PAPI Version : 4.1.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU
 X5570 @ 2.93GHz (26)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26
 Stepping: 5
CPU Megahertz : 1600.000000
CPU Clock Megahertz : 1600
Hdw Threads per core : 2
Cores per Socket : 4
NUMA Nodes : 2
CPU's per Node : 8
Total CPU's : 16
Number Hardware Counters : 16
Max Multiplex Counters : 512

 Name Code Avail Deriv Description
PAPI_L1_DCM 0x80000000 Yes No
 Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No
 Level 1 instruction cache misses
...

Of 107 possible events, 35 are available, of
which 9 are derived.

juropa$ papi_avail -d
...
Symbol Event Code Count |Short Descr.|
 |Long Description|
 |Developer's Notes|
 |Derived|
 |PostFix|
 Native Code[n]: <hex> |name|
PAPI_L1_DCM 0x80000000 1 |L1D cache misses|
 |Level 1 data cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40002028 |L1D:REPL|
PAPI_L1_ICM 0x80000001 1 |L1I cache misses|
 |Level 1 instruction cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40001031 |L1I:MISSES|
PAPI_L2_DCM 0x80000002 2 |L2D cache misses|
 |Level 2 data cache misses|
 ||
 |DERIVED_SUB|
 ||
 Native Code[0]: 0x40000437 |L2_RQSTS:MISS|
 Native Code[1]: 0x40002037 |
L2_RQSTS:IFETCH_MISS|
...

PAPI preset counters (and their definitions)

juropa$ papi_native_avail
Available native events and hardware information.
...
Event Code Symbol | Long Description |
--
0x40000000 UNHALTED_CORE_CYCLES | count core clock cycles whenever the cloc |
 | k signal on the specific core is running (not halted). Alias to e |
 | vent CPU_CLK_UNHALTED:THREAD |
--
0x40000001 INSTRUCTION_RETIRED | count the number of instructions at retire |
 | ment. Alias to event INST_RETIRED:ANY_P |
--
...
--
0x40000086 UNC_SNP_RESP_TO_REMOTE_HOME | Remote home snoop response - LLC d |
 | oes not have cache line |
 40000486 :I_STATE | Remote home snoop response - LLC does not have cache |
 | line |
 40000886 :S_STATE | Remote home snoop response - LLC has cache line in S |
 | state |
 40001086 :FWD_S_STATE | Remote home snoop response - LLC forwarding cache |
 | line in S state. |
 40002086 :FWD_I_STATE | Remote home snoop response - LLC has forwarded a |
 | modified cache line |
 40004086 :CONFLICT | Remote home conflict snoop response |
 40008086 :WB | Remote home snoop response - LLC has cache line in the M s |
 | tate |
 40010086 :HITM | Remote home snoop response - LLC HITM |
--
Total events reported: 135

PAPI native counters (and qualifiers)

Automated profile-based performance analysis
■ Iterative on-line performance analysis

► Multiple distributed hierarchical agents
■ Automatic search for bottlenecks based on properties

formalizing expert knowledge
► MPI wait states
► Processor utilization hardware counters

■ Clustering of processes/threads with similar properties
■ Eclipse-based integrated environment

Supports
■ SGI Altix Itanium2, IBM Power and x86-based architectures

Developed by TU Munich
■ Released as open-source
■ http://www.lrr.in.tum.de/periscope

Periscope

http://www.lrr.in.tum.de/periscope

MPI
■ Excessive MPI communication time
■ Excessive MPI time due to many small messages
■ Excessive MPI time in receive due to late sender
■ ...

Hardware performance counters (platform-specific)
■ Cycles lost due to cache misses

► High L1/L2/L3 demand load miss rate
■ Cycles lost due to store instructions
■ Cycles lost due to address translation misses
■ Cycles lost due to no instruction to dispatch
■ ...

Periscope properties & strategies (examples)

SC ’10: Hands-on Practical Parallel Application Performance Engineering

26

Periscope plug-in to Eclipse environment

SIR outline view

Properties view

Project view

Source code view

Automatic performance analysis toolset
■ Scalable performance analysis of large-scale applications

► particularly focused on MPI & OpenMP paradigms
► analysis of communication & synchronization overheads

■ Automatic and manual instrumentation capabilities
■ Runtime summarization and/or event trace analyses
■ Automatic search of event traces for patterns of inefficiency

► Scalable trace analysis based on parallel replay
■ Interactive exploration GUI and algebra utilities for XML

callpath profile analysis reports
Developed by JSC & GRS

■ Released as open-source
■ http://www.scalasca.org/

Scalasca

http://www.scalasca.org/

Scalasca automatic trace analysis report

Scalasca hybrid analysis report

Scalasca automatic trace analysis report

Integrated performance toolkit
■ Instrumentation, measurement, analysis & visualization

► Highly customizable installation, API, envvars & GUI
► Supports multiple profiling & tracing capabilities

■ Performance data management & data mining
■ Targets all parallel programming/execution paradigms

► Ported to a wide range of computer systems
■ Performance problem solving framework for HPC
■ Extensive bridges to/from other performance tools

► PerfSuite, Scalasca, Vampir, ...
Developed by U. Oregon/PRL

■ Broadly deployed open-source software
■ http://tau.uoregon.edu/

TAU Performance System

http://tau.uoregon.edu/

TAU Performance System components

SC ’10: Hands-on Practical Parallel Application Performance Engineering

32

TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T
P

er
fD

M
F

P
ar

aP
ro

f

Performance Data Mining

Performance Monitoring

T
A

U
ov

er
Su

pe
rm

on

PerfExplorer

TAU ParaProf GUI displays (selected)

TAU PerfExplorer data mining

Interactive event trace analysis
■ Alternative & supplement to automatic trace analysis
■ Visual presentation of dynamic runtime behaviour

► event timeline chart for states & interactions of processes/threads
► communication statistics, summaries & more

■ Interactive browsing, zooming, selecting
► linked displays & statistics adapt to selected time interval (zoom)
► scalable server runs in parallel to handle larger traces

Developed by TU Dresden ZIH
■ Open-source VampirTrace library bundled with OpenMPI 1.3
■ http://www.tu-dresden.de/zih/vampirtrace/
■ Vampir Server & GUI have a commercial license
■ http://www.vampir.eu/

Vampir & VampirTrace

http://www.tu-dresden.de/zih/vampirtrace/
http://www.vampir.eu/

Vampir interactive trace analysis GUI

Vampir interactive trace analysis GUI

Vampir interactive trace analysis GUI (zoom)

● Interactive event trace analysis
■ Visual presentation of dynamic runtime behaviour

► event timeline chart for states & interactions of processes
► Interactive browsing, zooming, selecting

■ Large variety of highly configurable analyses & displays
● Developed by Barcelona Supercomputing Center

■ Paraver trace analyser and Extrae measurement library
■ Open source available from http://www.bsc.es/paraver/

Paraver & Extrae

http://www.bsc.es/paraver/

Paraver interactive trace analysis GUI

VI-HPS component technologies

Key tool components also provided as open-source
■ Program development environment

► Eclipse PTP ETFw, UNITE
■ Program/library instrumentation

► COBI, OPARI, PDToolkit
■ Runtime measurement systems

► Score-P, UniMCI
■ Scalable I/O

► SIONlib
■ Libraries & tools for handling (and converting) traces

► EPILOG, PEARL, OTF
■ Analysis algebra & hierarchical/topological presentation

► CUBE

Scalable performance measurement infrastructure
■ Supports instrumentation, profiling & trace collection,

as well as online analysis of HPC parallel applications
■ Works with Periscope, Scalasca, TAU & Vampir prototypes
■ Based on updated tool components

► CUBE4 profile data utilities & GUI
► OA online access interface to performance measurements
► OPARI2 OpenMP & pragma instrumenter
► OTF2 open trace format

Created by German BMBF SILC & US DOE PRIMA projects
■ JSC, RWTH, TUD, TUM, GNS, GRS, GWT & UO PRL
■ Available as BSD open-source from http://www.score-p.org/

Score-P

http://www.score-p.org/

Portable native parallel I/O library & utilities
■ Scalable massively-parallel I/O to task-local files
■ Manages single or multiple physical files on disk

► optimizes bandwidth available from I/O servers by matching
blocksizes/alignment, reduces metadata-server contention

■ POSIX-I/O-compatible sequential & parallel API
► adoption requires minimal source-code changes

■ Tuned for common parallel filesystems
► GPFS (BlueGene), Lustre (Cray), ...

■ Convenient for application I/O, checkpointing,
► Used by Scalasca tracing (when configured)

Developed by JSC
■ Available as open-source from

http://www.fz-juelich.de/jsc/sionlib/

SIONlib

http://www.fz-juelich.de/jsc/sionlib/

Uniform integrated tool environment
■ Manages installation & access to program development tools

► based on software environment management “modules”
► commonly used on most cluster and HPC systems
► configurable for multiple MPI libraries & compiler suites

■ Specifies how & where tools packages get installed
► including integrating tools where possible

■ Defines standard module names and different versions
■ Supplies pre-defined module files
■ Configurable to co-exist with local installations & policies

Developed by JSC, RWTH & TUD
■ Available as open-source from

http://www.vi-hps.org/projects/unite/

UNITE

http://www.vi-hps.org/projects/unite/

	Intro title
	Outline
	Outine+
	Disclaimer
	Survey
	Preparation
	vi-hps
	Founding partners
	New partners
	Core tools
	Tools list
	Integration
	Training
	Further training
	LiveDVD
	KCachegrind
	KCachegrind GUI
	Marmot overview
	Marmot logfiles
	MUST
	PAPI
	papi_avail
	papi_native_avail
	Periscope overview
	Periscope properties
	Periscope plug-in
	Scalasca overview
	Scalasca GUI
	Scalasca bt-mz sum
	Scalasca bt-mz trace
	TAU overview
	TAU components
	Tau paraprof
	Tau perfexplorer
	Vampir overview
	Vampir GUI
	Vampir bt-mz overview
	Vampir bt-mz zoom
	Paraver overview
	Paraver GUI
	Component technologies
	Score-P
	SIONlib
	UNITE

