VIRTUAL INSTITUTE 1 HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO
: C . L/
Performance Analysis and Optimization Tool UVSQE
UnIVGI’SIté.PARIS-SACLAY
Emmanuel OSERET, Jasper Salah IBNAMAR
emmanuel.oseret@uvsq.fr, mohammed -salah.ibnamar @uvsq.fr intel)
Performance Evaluation Team, University of Versailles S -Q-Y
http://www.magao.org
VI-HPS 35" TW (Online) HLRS, Germany T 14-18 September 2020
arm @) JiLicH [s @ DRy

o /M Lawrence Livermore £ TECHNISCHE
@®=— = Eaowmmm RWTHACHEN e

http://www.maqao.org/

Performance analysis and optimisation

How much of an application can be optimized?
A What would the effort/gain ratio be?

Where is the application spending most execution time and
resources?

Why is the application spending time there?
A Algorithm, implementation, runtime or hardware?
A Data access or computation?

How to improve the application?

A At which step(s) of the workflow or dev process?
A What additional information is needed?

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

Algorithm

|

Implementation

[Source Code }[Parallelisation }

|

Compilation

]

Execution

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

A multifaceted problem

Pinpointing the performance bottlenecks

ldentifying the dominant category of issues
AAl gorithms, i mplementation, paral IQI
L
Making the bestuse of the machine features ? p
n

A Complex multicore and manycore CPUs

A Complex memory organization
C Need for dedicated and complementary tools

Finding the most rewarding issues to be fixed
A40% total time, expected 10% speedup

A € TOTAL IMPACT: 4% speedup _
A20% total time, expected 50% speedup

A C TOTAL IMPACT: 10% speedup _

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 3

< AVARTUAL ANSTFITUTE 1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Motivating example

Code of a loop representing ~10% walltime

6) Variable number of iterations _ _
/ Source code and associated issues:

doj =ni + nvaluel, nato 2) Non -unit stride accesses
" njl = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \ 1) High number of statements
P ul=x117 x(njl);u2=x127T x(nj2); u3 =x1371 x(nj3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold()) 2) Non-unit stride accesses
rij = demi*(rvwi + rvwalcl1(j))
drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)e—— 4) DIVISQRT 3)
Eq = qql*qq(j)*drtest
ntj = nti + ntype(j) 4) DIVISQRT
Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses 5)
Eqc = Eqc + Eq ; Ephob = Ephob + Ed } _
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions
ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gk
glc=glciulg;g2c=g2ci u2g;g3c=g3ciu3g
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

_gr(nj3, thread_num) = gr(nj3, thread_num) + u3

Indirect accesses

Reductions

6) Variable number of iterations

1) High number of statements

end do 2) Non -unit stride accesses

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 4

MAQAO: Modular Assembly Quality Analyzer and Optimizer

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Objectives:

A Characterizing performance of HPC applications
A Focusing on performance at the core level

A Guiding users through the optimization process
A Estimating return on investment (R.O.l.)

Characteristics:
A Modular tool offering complementary views

A Support for Intelx86 -64 and Xeon Phi
A ARM on -going development

ALGPL3 Open Source software
A Developed at UVSQ since 2004
A Binary release available as a static executable

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

o/ T1100 o
11011 09
Lo 0191 frored

VARTUYAL INSTFITUTE A *HIGH PRODUCTIVITY SUPERCOMPUTING

Success stories

MAQAO is used for optimizing industrial and academic HPC applications:

A QMC=CHEM (IRSAMC)
A Quantum chemistry
A Speedup: > 3x
A Optimization: moved invocations of functions with identical parameters out of the loop body

AYales2 (CORIA)

A Computational fluid dynamics
A Speedup: up to 2.8x
A Optimization: removing double structure indirections
A Polaris (CEA)
A Molecular dynamics
A Speedup: 1.5x i 1.7x
A Optimization: enforcing loop vectorization through compiler directives

A AVBP (CERFACS)
A Computational fluid dynamics
A Speedup: 1.08x i 1.17x
A Replaced divisions by reciprocal multiplications
A Complete unrolling of loops with a small number of iterations

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 6

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Partnerships

MAQAO is funded by UVSQ, Intel and CEA (French department of energy) through Exascale Computing
Research (ECR) and the French Ministry of I ndustryos Vv:

PerfCloud , ELCI, etc...) W
- =

Provides core binary analysis and instrumentation capabilities and features for other tools:

A TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
AATOS bullxprof with MADRAS through MIL

A Intel Advisor

A INRIA Bordeaux HWLOC

PeXL ISV also contributes to MAQAO:

A Commercial performance optimization expertise G P XL
A Training and software development

A www.pexl.eu

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 7

http://www.pexl.eu/

MAQAOQO team and collaborators

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Team

A William Jalby, Prof.

A Cédric Valensi, Ph.D.

A Emmanuel Oseret, Ph.D.

A Mathieu Tribalat , M.Sc.Eng .
A Salah Ibn Amar, M.Sc.Eng .
A Kévin Camus, Eng.

Collaborators

A David J. Kuck, Prof

A Andrés S. Charif -Rubial , Ph.D.
A Eric Petit, Ph.D.

A Pablo de Oliveira, Ph.D.

A David C. Wong, Ph.D.

A Othman Bouizi, Ph.D.

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

Past Collaborators or Team Members
A Denis Barthou , Prof.

A Jean-Thomas Acquaviva , Ph.D.
A Stéphane Zuckerman, Ph.D.

A Julien Jaeger, Ph.D.

A Souad Koliai, Ph.D.

A Zakaria Bendifallah , Ph.D.

A Tipp Moseley, Ph.D.

A Jean-Christophe Beyler, Ph.D.

A Hugo Bolloré , M.Sc.Eng .

A Jean-Baptiste Le Reste, M.Sc.Eng .
A Sylvain Henry, Ph.D.

A José Noudohouenou , Ph.D.
A Aleksandre Vardoshvili |, M.Sc.Eng .
A Romain Pillot, Eng

A Youenn Lebras, Ph.D.

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Analysis at binary level

Advantages of binary analysis:
A Compiler optimizations increase the distance between the executed code and the source code
A Source code instrumentation may prevent the compiler from applying certain transformations

Eval uate the nar eal WhaeYowrAnalysedsdVhat ¥al Run

Main steps:
AConstruct high level structures (CFG, DDG, SSA, ¢)
A Relate the analyses to source code

A A single source loop can be compiled as multiple assembly loops Loop S
< :) . " . ource
A Affecting unique identifiers to loops L255@file.c

~ Peel/Prolog
. > ASM
W v
B Tail/Epilog
J

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

VARTUYAL INSTFITUTE A *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Main structure

Application
Loop 42 50%
vectorised
Potential x1.2
speedup III III Ill III
Internal
g COA

Reports

Representation
+ Machine
model

MAQAO Methodology

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Decision tree

L Profiling

L Loops of interest

L Analysis

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

CPU oriented

{ Code Quality Analysis

{ Differential analysis

L Value Profiling

Memory oriented

| Memory behaviour
characterization

L Differential analysis

11

VARTUYAL INSTFITUTE A *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAQO LProf : Lightweight Profiler

WY | A @ ,L\ (W Global Application Functions

Goal : Lightweight localization of application
hotspots

Right-click on a line to display the associated load balancing.
Double click on a loop to display its analysis details.

Name ‘ Module Cov&r)age Time (s5) Th:'eI:l i Deviation
. o binvcrhs bt-mz.C.16 2319 13.66 64 1.73
Fe atu reS . ¥ y_solve bt-mz.C.16 13.09 7.7 64 1.08
¥ Loop 204 - y_solve f:53-407 - bt-mz.C.16 12.84 7.56
4 . ¥ Loop 205 - y_solve.f:54-407 - bt-mz.C.16 12.84 7.56
A Sam pl | ng based ¥ Loop 207 - y_solve.f:54-398 - bt-mz.C.16 12.84 7.56
o Loop 211 - y_solve f:145-307 - bt-mz.C.16 7.06 416
Ve o Loop 213 - y_solve.f:55-137 - bt-mz.C.16 4.43 2.61
A Access to h ardware COU nters > Loop 206 - y_solve.f:394-398 - bt-mz.C.16 0.88 0.52
o Loop 209 - y_solve.f:337-360 - bt-mz.C.16 0.33 0.19
L o Loop 210 - y_solve.f:145-307 - bt-mz.C.16 0.09 0.05
M M - o Loop 212 - y_solve f:55-137 - bt-mz.C.16 0.05 0.03
A Analysis at function and loop granularity wmzcie | e | ve | s | 1oz
o _INTERNAL_ZS_______src_kmp_barrier_cpp_ce6351 04::__kmp_hyper_barrier_release(barrier_type, libiomps 50 12 36 728 64 822
kmp_info*, int, int, int, void*)
» matmul_sub bt-mz.C.16 11.95 7.04 64 0.92
.Z_SO'VE t -t oo tTT o T
» compute_rhs bt-mz.C.16 - Loop 211
StrengthS' » matvec_sub
- = MPIDI_CH3I_Progress 7
o binvrhs

ANon intrusive : No recompilation necessary

o system_call_after_swapgs

n o _INTERNAL_25_______src_kmp_barrier_cpp_ce635104:
A L OW Overh ead kmp_info*, int, int, void (*)(void*, void*), void*)
o sysret_check

- . . . o __kmp_yield

o apic_timer_interrupt

A Agnostic with regard to parallel runtime 2 e tmer merpt
» exact_solution

o update_curr

o __audit_syscall_entry

o __schedule

o task_tick_fair
» copy_y_facetomp_loop_0

o cpuacct_charge

o intel_pstate_update_util
o ktime,get 30083 30877 30042 30071 30079 30882 20040 308487 20981 30887

MAOAOQ thread rank

Coverage

VARTUYAL INSTFITUTE A *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance

Features:

A Static analysis: no execution of the application

A Allows cross -analysis of/on multiple architectures

A Compiler generated code quality evaluation

AProposes hints and workarounds to improve
quality/performance

A Loops centric
A In HPC, loops cover most of the processing time

ATargets compute -bound codes

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE _

¥ COA Report
The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_sclve f:415-423

¥ Path 1
2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1CHz))
[gain] potential I hint] expert

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing
them, you can lower the cost of an iteration from 65 00 to 5700 cycles (1.14x speedup).

Workaround

» Try to reorganize arrays of structures to structures of arrays

= Consider to permute loops (see vectorization gain report)

= To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the
"contiguous” attribute (Fortran 2008)

» For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b
before this loop

Your loop is not vectorized. 8§ data elements could be processed at once in vector registers_ By vectorizing your
loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

= Try another compiler or update/tune your current one:

o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”,
try the VECTOR ALWAYS directive.

= Remove inter-iterations dependences from your loop and make it unit-stride

o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i1 do j a(i,j) =
b(i,j) (slow, non stride 1) == do i do j a(j,i) = b(i,j) (fast, stride 1)

o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i
ali)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Main Concepts

Applications exploit at best 5 to 10% of the peak performance.

Main elements of analysis:
A Peak performance Same instruction i Same cost

A Execution pipeline .

A Resources/Functional units Process up to
] 8X data

Key performance levers for core level efficiency:

A Vectorization

A Avoiding high latency instructions if possible (DIV/ISQRT)
A Guiding the compiler code optimization
A Reorganizing memory and data structures layout

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 14

< AVARTUAL ANSTFITUTE 1 *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Guiding the compiler and hints

Compilers can be driven using flags, pragmas, and keywords:

A Ensuring full use of architecture capabilities (e.g. using flag -XHost on AVX capable machines)
AForcing optimizations (unrolling, vectorization, aligr
A Bypassing conservative behaviour when possible (e.g. 1/X precision)

Hints for implementation changes:

A lmprove data access patterns
A Memory alignment
A Loop interchange
A Changing loop strides
A Reshaping arrays of structures
AAvoid instructions with high | atency (SQRT, DIV, GATHE

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 15

VARTUYAL INSTFITUTE A *HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator

MASAO cobal

Automating the whole analysis process
A Invoke multiple MAQAO modules

A Generate aggregated performance views
A Generate a reportin ~ HTML format

Main steps: —
Alnvokes LProf to identify hotspots e T e —
Alnvokes CQA on hotspots SN

Available results:

A Speedup predictions

AGlobal code quality metrics
AHints for improving performance
AParallel efficiency analysis

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Analysing an application with MAQAO

ONE View execution

A Provide all parameters necessary for executing the application
A Parameters can be passed on the command line or as a configuration file

AParameters include binary name, MPI commands, dataset di
$ magao oneview -- create -report=one -- binary =bt - mz.C.16 -- mpi_command=" mpirun
$ magao oneview -- create -report=one -- config= my_config.lua "

A Analyses can be tweaked if necessary
A Report level one corresponds to lightweight profiling (LProf) and code quality analysis (CQA)

A ONE View can reuse an existing experiment directory to perform further analyses

A Results available in HTML format by default
A XLS spreadsheets and textual output generation are also available

Online help is available:
$ magao oneview -- help

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE

rectory,

-n 16"

17

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced analyses

A LProf
A Profiling

$ magao Iprof xp=exp_dir -- mpi-command="mpirun -n16" -- ./bt -mz.C.16
A Display functions profile

$ magao lprof xp=exp_dir idf
A Displaying the results from a ONE View run

$ magao Iprof xp=oneview xp dir /Iprof_npsu I df

ACQA

$ magao cga loop =42 bt - mz.C.16

Online help is available:
$ maqao Iprof -- help

$ magao cga -- help

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 18

VARTUYAL INSTFITUTE A1 *HIGH PRODUCTIVITY SUPERCOMPUTING

Global summary

Experiment summary
A Machine characteristics and configuration

Global metrics

A General quality metrics derived from MAQAO
analyses

A Global speedup predictions

bin/bt-mz C.x
20200514 150414

MPI; OpenF;

A Speedup prediction depending on the number of vectorised 3
IOO pS i’nu: 3100-957 38 3 xcea? &7 x86_64 #1 SMP Thu Nov 28 15:21:21 CET 2019 :-;I':C\‘r'é‘mgll;glh Number : s

A Ordered speedups to identify the loops to optimise first

35TH VI -HPS TUNING WORKSHOP (HLRS, GERMANY, 14 -18 SEPTEMBER 2020) - ONLINE 19

