
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

•Calculation of metrics

•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data

•Aggregation of performance data

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

Analysis Optimization

2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Fragmentation of tools landscape

 Several performance tools co-exist
 Separate measurement systems and output formats

 Complementary features and overlapping functionality

 Redundant effort for development and maintenance
 Limited or expensive interoperability

 Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P project idea

 Start a community effort for a common infrastructure
 Score-P instrumentation and measurement system

 Common data formats OTF2 and CUBE4

 Developer perspective:
 Save manpower by sharing development resources

 Invest in new analysis functionality and scalability

 Save efforts for maintenance, testing, porting, support, training

 User perspective:
 Single learning curve

 Single installation, fewer version updates

 Interoperability and data exchange

 Project funded by BMBF

 Close collaboration PRIMA project funded by DOE

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Partners

 Forschungszentrum Jülich, Germany

 Gesellschaft für numerische Simulation mbH Braunschweig, Germany

 RWTH Aachen, Germany

 Technische Universität Darmstadt, Germany

 Technische Universität Dresden, Germany

 Technische Universität München, Germany

 University of Oregon, Eugene, USA

5 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Design goals

 Functional requirements
 Generation of call-path profiles and event traces

 Using direct instrumentation and sampling

 Flexible measurement without re-compilation

 Recording time, visits, communication data, hardware counters

 Access and reconfiguration also at runtime

 Support for MPI, SHMEM, OpenMP, Pthreads, CUDA, OpenCL, OpenACC and their valid

combinations

 Highly scalable I/O

 Non-functional requirements
 Portability: all major HPC platforms

 Scalability: petascale

 Low measurement overhead

 Robustness

 Open Source: 3-clause BSD license

6 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P overview

7 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

Application

Vampir Scalasca Periscope TAU

Accelerator-based
parallelism

(CUDA, OpenCL,
OpenACC)

Score-P measurement infrastructure

Event traces (OTF2)
Call-path profiles
(CUBE4, TAU)

Online interface
Hardware counter (PAPI, rusage, PERF, plugins)

Process-level parallelism
(MPI, SHMEM)

Thread-level parallelism
(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Sampling interrupts
(PAPI, PERF)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features and management

 Scalability to maximum available CPU core count

 Support for binary instrumentation

 Support for new programming models, e.g., PGAS

 Support for new architectures

 Ensure a single official release version at all times

which will always work with the tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model

 Open for contributions and new partners

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on:

NPB-MZ-MPI / BT

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Recap: Local installation

 VI-HPS tools not yet installed system-wide
 Source provided shell code snippet to add local tool installations to $PATH

 Required for each shell session

 Copy tutorial sources to your working directory, ideally on a parallel file system

(recommended: $SCRATCH)

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 11

% source ~tg828282/Tutorial/vihps-intel.sh

% cd $SCRATCH

% tar zxvf ~tg828282/Tutorial/NPB3.3-MZ-MPI.tar.gz

% cd NPB3.3-MZ-MPI

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT instrumentation

 Edit config/make.def to

adjust build configuration
 Modify specification of

compiler/linker: MPIF77

12

#---

The Fortran compiler used for MPI programs

#---

#MPIF77 = mpiifort

Alternative variants to perform instrumentation

...

MPIF77 = scorep --user mpiifort

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...

Uncomment the Score-P

compiler wrapper

specification

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT instrumented build

 Return to root directory

and clean-up

 Re-build executable using

Score-P compiler wrapper

13

% make clean

% make bt-mz CLASS=C NPROCS=32

cd BT-MZ; make CLASS=C NPROCS=32 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; icc -o setparams setparams.c -lm

../sys/setparams bt-mz 32 C

scorep --user mpiifort -c -g -O3 -qopenmp bt.f

 [...]

cd ../common; scorep --user mpiifort -c -g -O3 -qopenmp timers.f

 [...]

scorep --user mpiifort –g –O3 -qopenmp -o ../bin.scorep/bt-mz_C.32 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_C.32

make: Leaving directory 'BT-MZ‘

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement configuration: scorep-info

 Score-P measurements

are configured via

environmental variables

14

% scorep-info config-vars --full

SCOREP_ENABLE_PROFILING

 Description: Enable profiling

 [...]

SCOREP_ENABLE_TRACING

 Description: Enable tracing

 [...]

SCOREP_TOTAL_MEMORY

 Description: Total memory in bytes for the measurement system

 [...]

SCOREP_EXPERIMENT_DIRECTORY

 Description: Name of the experiment directory

 [...]

SCOREP_FILTERING_FILE

 Description: A file name which contain the filter rules

 [...]

SCOREP_METRIC_PAPI

 Description: PAPI metric names to measure

 [...]

SCOREP_METRIC_RUSAGE

 Description: Resource usage metric names to measure

 [... More configuration variables ...]

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary measurement collection

 Change to the directory

containing the new

executable before running

it with the desired

configuration

 Check settings

 Submit job

15

% cd bin.scorep

% cp ../jobscript/stampede2/scorep.sbatch .

% vim scorep.sbatch

Score-P measurement configuration

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum

#export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_TOTAL_MEMORY=50M

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

#export SCOREP_ENABLE_TRACING=true

Run the application

ibrun ./bt-mz_${CLASS}.${PROCS}

% sbatch ./scorep.sbatch

Leave these lines

commented out

for the moment

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary measurement collection

 Check the output of the

application run

16

% less mzmpibt.o<job_id>

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP \

>Benchmark

 Number of zones: 16 x 16

 Iterations: 200 dt: 0.000100

 Number of active processes: 32

 Use the default load factors with threads

 Total number of threads: 128 (4.0 threads/process)

 Calculated speedup = 125.90

 Time step 1

 [... More application output ...]

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report examination

 Creates experiment

directory including
 A record of the measurement

configuration (scorep.cfg)

 The analysis report that was

collated after measurement

(profile.cubex)

 Interactive exploration

with Cube

17

% ls

bt-mz_C.32 mzmpibt.e<job_id> mzmpibt.o<job_id>

scorep_bt-mz_sum

% ls scorep_bt-mz_sum

profile.cubex scorep.cfg

% cube scorep_bt-mz_sum/profile.cubex

 [CUBE GUI showing summary analysis report]

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

Hint:

Copy ‘profile.cubex’ to Live-DVD

environment using ‘scp’ to improve

responsiveness of GUI

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

http://www.score-p.org

 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

 18 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application

 analyze its execution with a summary measurement, and

 examine it with one the interactive analysis report explorer GUIs

 ... revealing the call-path profile annotated with
 the “Time” metric

 Visit counts

 MPI message statistics (bytes sent/received)

 ... but how good was the measurement?
 The measured execution produced the desired valid result

 however, the execution took rather longer than expected!
 even when ignoring measurement start-up/completion, therefore

 it was probably dilated by instrumentation/measurement overhead

2 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

 Report scoring as textual

output

 Region/callpath classification

 MPI pure MPI functions

 OMP pure OpenMP regions

 USR user-level computation

 COM “combined” USR+OpenMP/MPI

 ANY/ALL aggregate of all region

types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160 GB

Estimated requirements for largest trace buffer (max_buf): 6 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 6 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 5,421,104,056 6,586,922,497 8162.56 100.0 1.24 ALL

 USR 5,407,570,350 6,574,832,225 3960.99 48.5 0.60 USR

 OMP 15,783,372 10,975,232 4085.92 50.1 372.29 OMP

 MPI 944,200 386,560 92.05 1.1 238.13 MPI

 COM 665,210 728,480 23.60 0.3 32.40 COM

160 GB total memory

6 GB per rank!

4

USR

USR

COM

COM USR

OMP MPI

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

 Score report breakdown by region

5

% scorep-score -r scorep_bt-mz_sum/profile.cubex

 [...]

 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 5,421,104,056 6,586,922,497 8162.56 100.0 1.24 ALL

 USR 5,407,570,350 6,574,832,225 3960.99 48.5 0.60 USR

 OMP 15,783,372 10,975,232 4085.92 50.1 372.29 OMP

 MPI 944,200 386,560 92.05 1.1 238.13 MPI

 COM 665,210 728,480 23.60 0.3 32.40 COM

 USR 1,741,005,318 2,110,313,472 1204.11 14.8 0.57 matmul_sub_

 USR 1,741,005,318 2,110,313,472 851.97 10.4 0.40 matvec_sub_

 USR 1,741,005,318 2,110,313,472 1754.58 21.5 0.83 binvcrhs_

 USR 76,367,538 87,475,200 65.93 0.8 0.75 lhsinit_

 USR 76,367,538 87,475,200 59.43 0.7 0.68 binvrhs_

 USR 56,913,688 68,892,672 24.62 0.3 0.36 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

5 GB just for these

6 regions

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

 Summary measurement analysis score reveals

 Total size of event trace would be ~160 GB

 Maximum trace buffer size would be ~6 GB per rank

 smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

 99.7% of the trace requirements are for USR regions

 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 49% of total time

 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration

 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

6 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Report scoring with

prospective filter listing

6 USR regions

7

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% scorep-score -f ../config/scorep.filt -c 2 \

 scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 1156 MB

Estimated requirements for largest trace buffer (max_buf): 41 MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 49 MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=49MB to avoid \

>intermediate flushes

 or reduce requirements using USR regions filters.)

1,1 GB of memory in total,

49 MB per rank!

(Including 2 metric values)

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Score report breakdown

by region

8

% scorep-score -r –f ../config/scorep.filt \

 scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/ region

 visit[us]

 - ALL 5,421,104,056 6,586,922,497 8162.56 100.0 1.24 ALL

 - USR 5,407,570,350 6,574,832,225 3960.99 48.5 0.60 USR

 - OMP 15,783,372 10,975,232 4085.92 50.1 372.29 OMP

 - MPI 944,200 386,560 92.05 1.1 238.13 MPI

 - COM 665,210 728,480 23.60 0.3 32.40 COM

 * ALL 17,390,726 12,138,209 4201.91 51.5 346.17 ALL-FLT

 + FLT 5,407,531,376 6,574,784,288 3960.65 48.5 0.60 FLT

 - OMP 15,783,372 10,975,232 4085.92 50.1 372.29 OMP-FLT

 - MPI 944,200 386,560 92.05 1.1 238.13 MPI-FLT

 * COM 665,210 728,480 23.60 0.3 32.40 COM-FLT

 * USR 38,974 47,937 0.34 0.0 7.14 USR-FLT

 + USR 1,741,005,318 2,110,313,472 1204.11 14.8 0.57 matmul_sub_

 + USR 1,741,005,318 2,110,313,472 851.97 10.4 0.40 matvec_sub_

 + USR 1,741,005,318 2,110,313,472 1754.58 21.5 0.83 binvcrhs_

 + USR 76,367,538 87,475,200 65.93 0.8 0.75 lhsinit_

 + USR 76,367,538 87,475,200 59.43 0.7 0.68 binvrhs_

 + USR 56,913,688 68,892,672 24.62 0.3 0.36 exact_solution_

Filtered
routines

marked with
‘+’

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

9

 Set new experiment

directory and re-run

measurement with new

filter configuration

 Submit job

% cd bin.scorep

% cp ../jobscript/stampede2/scorep.sbatch .

% vim scorep.sbatch

Score-P measurement configuration

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_TOTAL_MEMORY=50M

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

#export SCOREP_ENABLE_TRACING=true

Run the application

ibrun ./bt-mz_${CLASS}.${PROCS}

% sbatch ./scorep.sbatch

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

10 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

11 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

This is a comment

SCOREP_FILE_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE */foo/bar*

 INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

12 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

This is a comment

SCOREP_REGION_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE *

 INCLUDE bar foo

 baz

 main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

13 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

void bar(int* a) {

 *a++;

}

int main() {

 int i = 42;

 bar(&i);

 return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

http://www.score-p.org

 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

 14 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

 3 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

4 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 5

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Enables users to install library wrappers for any C/C++ library

 Intercept calls to a library API
 no need to either build the library with Score-P or add manual instrumentation to the application

using the library

 no need to access the source code of the library, header and library files suffice

 Score-P needs to be executed with --libwrap=…

 Execute scorep-libwrap-init for directions:

6 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

Step 1: Initialize the working directory

Step 2: Add library headers

Step 3: Create a simple example application

Step 4: Further configure the build parameters

Step 5: Build the wrapper

Step 6: Verify the wrapper

Step 7: Install the wrapper

Step 8: Verify the installed wrapper Step 9: Use the wrapper

Only once Often

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Generate your own library wrappers by telling scorep-libwrap-init how you would

compile and link an application, e.g. using FFTW

 Generate and build wrapper

7 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% scorep-libwrap-init \

> –-name=fftw \

> --prefix=$PREFIX \

> -x c \

> --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \

> --ldflags=“-L$FFTW_LIB“ \

> --libs=“-lfftw3f -lfftw3“ \

> working_directory

% cd working_directory

% ls # (Check README.md for instructions)

% make # Generate and build wrapper

% make check # See if header analysis matches symbols

% make install #

% make installcheck # More checks: Linking etc.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 MPI + OpenMP

 Calls to FFTW library

8 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

9 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 10

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 11

Memory leaks Memory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

12

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

13 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

14

% papi_avail

% papi_native_avail

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 No replacement for automatic compiler instrumentation

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

15 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

16

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

17

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

18

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

19

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Conclusion and Outlook

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

 Ensure a single official release version at all times which will always work with the

tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model

 Open for contributions and new partners

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

 Scalability to maximum available CPU core count

 Support for emerging architectures and new programming models

 Features currently worked on:
 Hardware and MPI topologies

 MPI-3 RMA support

 OpenMP tool support (OMPT)

 I/O recording

 Basic support of measurements without re-compiling/-linking

 Java recording

 Persistent memory recording (e.g., PMEM, NVRAM, …)

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019) 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under 3-clause BSD open-source license

 Documentation & Sources:

 http://www.score-p.org

 User guide also part of installation:

 <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

23 31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, 9-12 APRIL 2019)

