VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

W/
MAQAO v 8

ST—QUENTIN—EN-YVELINES

Performance Analysis and Optimization Tool

Cédric VALENSI, Emmanuel OSERET
{cedric.valensi, emmanuel.oseret}@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
http://www.magao.org
VI-HPS 31st TW Knoxville/TN — USA - 09-12 April 2019

TECHNISCHE Tachr = 7 |
a rm " JOL|0H M Leibiniz Supercomuting Centre umc&sn:r m . | UNIVERSITY OF OREGON.
U1 N s A 90 e DARMSTADT | | e

Forschungszentrum

M Lawrence Livermore W TECH!IIS mggm

http://www.maqao.org/

Performance analysis and optimisation

How much can I optimise my application?
= Can it actually be done?
= What would the effort/gain ratio be?

Where can I gain time?
= Where is my application wasting time?

Why is the application spending time there?
= Algorithm, implementation or hardware?
= Data access or computation?

How can I improve the situation?

= In which step(s) of the design process?
= What additional information do I need?

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

Algorithm

|

Implementation

[Source Code 1[Parallelisation 1

|

Compilation

|

Execution

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

A multifaceted problem

Pinpointing the performance bottlenecks

Identifying the dominant issues
= Algorithms, implementation, parallelisation, ...

Making the best use of the machine features
= Complex multicore and manycore CPUs
= Complex memory hierarchy

Finding the most rewarding issues to be fixed
= 40% total time, expected 10% speedup

= 2 TOTAL IMPACT: 4% speedup _
= 209%b total time, expected 50% speedup

= = TOTAL IMPACT: 10% speedup _

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 3

= Need for dedicated and complementary tools

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Motivating example

Code of a loop representing ~10% walltime

1) High number of statements

/ 6) Variable number of iterations

do j =ni + nvaluel, nato 2) Non-unit stride accesses

i nj1 =ndim3d* + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \

ul =x11 —x(nj1); u2 = x12 —x(nj2) ; u3 = x13 = x(n|3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)e—— 4) DIV/SQRT
Eq = qql*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses
Eqc = Eqc + Eq ; Ephob = Ephob + Ed ducti
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gk

glc =glc—-ulg; g2c =g2c—u2g; g3c =g3c—-u3g
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

i _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

end do 2) Non-unit stride accesses

Source code and associated issues:

1) High number of statements
2) Non-unit stride accesses
3) Indirect accesses

4) DIVISQRT

5) Reductions

6) Variable number of iterations

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

» Characterizing performance of HPC applications
= Focusing on performance at the core level

= Guiding users through optimization process

» Estimating return of investment (R.O.I.)

Characteristics:
= Modular tool offering complementary views

Support for Intel x86-64 and Xeon Phi
= ARM under development

LGPL3 Open Source software
Developed at UVSQ since 2004
Binary release available as static executable

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

BWATT L.
1511011072
Lo 0191 fongg

N\

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Success stories

MAQAO was used for optimizing industrial and academic HPC applications:
= QMC=CHEM (IRSAMCQC)

= Quantum chemistry
= Speedup: > 3x
= Moved invocation of function with identical parameters out of loop body

= Yales2 (CORIA)

= Computational fluid dynamics
= Speedup: up to 2.8x

= Removed double structure indirections

= Polaris (CEA)

= Molecular dynamics
= Speedup: 1.5x - 1.7x
» Enforced loop vectorisation through compiler directives

= AVBP (CERFACS)
= Computational fluid dynamics
= Speedup: 1.08x - 1.17x

» Replaced division with multiplication by reciprocal
= Complete unrolling of loops with small number of iterations

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 6

Partnerships

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

MAQAO was funded by UVSQ, Intel and CEA (French department of energy) through Exascale
Computing Research (ECR) and the French Ministry of Industry through various FUI/ITEA projects

(H4H, COLOC, PerfCloud, ELCI, etc...)

UNIVERSITE DE :@"@
VERSAILLES s

ST-QUENTIN-EN-YVELINES

L]
universite paris-sacLAY

Provides core technology to be integrated with other tools:
= TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)

= ATOS bullxprof with MADRAS through MIL
= Intel Advisor
= INRIA Bordeaux HWLOC

PeXL ISV also contributes to MAQAO:

= Commercial performance optimization expertise

* Training and software development
= wWww.pexl.eu

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

http://www.pexl.eu/

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Analysis at binary level

Advantages of binary analysis:

= Compiler optimizations increase the distance between the executed code and the source
= Source code instrumentation may prevent the compiler from applying some transformations

We want to evaluate the “real” executed code: What You Analyse Is What You Run

Main steps:
= Reconstruct the program structure
= Relate the analyses to source code

= A single source loop can be compiled as multiple assembly loops Loop S
: : : e : ource
= Affecting unique identifiers to loops L255@file.c

5

- Peel/Prolog
. ~ ASM
| vain
) Tail/Epilog
,

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO Main structure

Reports

Loop 42 50%
vectorised
Potential x1.2
speedup
g COA —’m
+ Machine
model

modules

Internal

Representation

i

MAQAO Methodology

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Decision tree

Profiling

Loops of interest

Analysis

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019)

CPU oriented

Code Quality Analysis

Differential analysis

Value Profiling

Memory oriented

Memory behaviour
characterization

Differential analysis

10

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Goal: Lightweight localization of application Rl
hotspots

Right-click on a line to display the associated load balancing.
Double click on a loop to display its analysis details.

Coverage

Name ‘ Module) Time (s5) Th:'eI:l i Deviation
bi h bt-mz.C.16 23.19 13.66 64 1.73
Featu res : : yj::\c\:es bt—m;CJS 13.09 7.7 64 1.08
¥ Loop 204 - y_solve f:53-407 - bt-mz.C.16 12.84 7.56
- S I - b d ¥ Loop 205 - y_solve.f:54-407 - bt-mz.C.16 12.84 7.56
v L 207 - y_solve.f:54-398 - bt-mz.C.16 12.84 7.56
a m p I n g a Se ooll_)sup 21]y— i?s\:ive_f:MS—iO? —rgf—mz.c.]ﬁ 7.06 4.16
. o Loop 213 - y_solve.f:55-137 - bt-mz.C.16 4.43 2.61
L 206 - y_solve.f:394-398 - bt-mz.C.16 0.88 0.52
= Access to hardware counters for additional 2 Loop 309y savesaan st bmeC1s
o Loop 210 - y_solve.f:145-307 - bt-mz.C.16 0.09 0.05
H H L 212 - y_solve f:55-137 - bt-mz.C.16 0.05 0.03
I n fo rm a tl O n > x_sul\?e P o " bt-mz.C.16 12.49 7.35 64 1.02
; _INTER*NAL_Z5_______src:kmp_barrier_cpp_ce635104 __kmp_hyper_barrier_release(barrier_type, libiomp5 50 1236 728 64 822
. - mp_info*, int, int, int, void*)
= Results at function and loop granularity msCle | nes 10 e o
sol .. P o RN P P
: ﬁ;ﬁ’pﬁe_,hs bt-mz.C.16 - Loop 211

» matvec_sub
= MPIDI_CH3I_Progress 7
o binvrhs

St re n g t h S : : Iahdscli;f”;mp_loop_o

o system_call_after_swapgs
= Non intrusive: No recompilation necessary | e mm i oo
t_check
ooyl
= Low overhead A N
» exact_solution

= Agnostic with regard to parallel runtime - S e

- task tick far

» copy_y_facetomp_loop_0
o cpuacct_charge

o intel_pstate_update_util
o ktime,get 30083 30877 30042 30071 30079 30882 20040 308487 20981 30887

MAOAOQ thread rank

Coverage

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance |vcoarepor

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_sclve f:415-423

¥ Path 1
2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1CHz))

Featu res : [gain] potential l hint] expert
= Evaluates the quality of the compiler generated code

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing
them, you can lower the cost of an iteration from 65 00 to 57.00 cycles (1.14x speedup).

= Returns hints and workarounds to improve quality —

» Try to reorganize arrays of structures to structures of arrays

u FOCU Ses O n IOO ps = Consider to permute loops (see vectorization gain report)

= To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the

n i i i "contiguous” attribute (Fortran 2008)
In H PC mOSt Of the tl me IS Spent In |Oops » For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b

before this loop

» Targets compute-bound codes L |

Your loop is not vectorized. 8§ data elements could be processed at once in vector registers_ By vectorizing your
loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

Static analysis:

- t. t . t_ = Try another compiler or update/tune your current one:
| | R q f h p p I o use the vec-report option to understand why your loop was not vectorized. If "existence of vector

e u I res no execu IO n 0 e a Ica IO n dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”,
- try the VECTOR ALWAYS directive.
] AI I - Iy = Remove inter-iterations dependences from your loop and make it unit-stride

OWS c ross a na SIS o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,

otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i1 do j a(i,j) =
b(i,j) (slow, non stride 1) == do i do j a(j,i) = b(i j) (fast, stride 1)

o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i
ali)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks
Found no such bottlenecks but see expert reports for more complex bottlenecks.

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) I _

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Main Concepts

Most of the time, applications only exploit at best 5 to 10% of the peak performance.

Main elements of analysis:

= Peak performance

= Execution pipeline

= Resources/Functional units Same instruction - Same cost

Key performance levers for core level efficiency:

= Vectorizing Pro;)e(scslatll:g to
= Avoiding high latency instructions if possible ...-....

» Having the compiler generate an efficient code
= Reorganizing memory layout

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 13

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Compiler and programmer hints

Compiler can be driven using flags and pragmas:

= Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
= Forcing optimization (unrolling, vectorization, alignment, ...)

= Bypassing conservative behaviour when possible (e.g. 1/X precision)

Implementation changes:

= Improve data access

= Loop interchange
= Changing loop strides
= Reshaping arrays of structures

= Avoid instructions with high latency

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 14

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator

Automating the whole analysis process

= Invocation of the required MAQAO modules

= Generation of aggregated performance views
available as HTML files

Main steps: ,, . _—
= Invokes LProf to identify hotspots e
= Invokes CQA on loop hotspots e

Available results:

Speedup predictions

Global code quality metrics
Hints for improving performance
Parallel efficiency

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 15

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Analysing an application with MAQAO

Execute ONE View

= Provide all parameters necessary for executing the application
» Parameters can be passed on the command line or into a configuration file
= Parameters include binary name, MPI commands, dataset directory, ...

$ magao oneview --create-report=one --binary=bt-mz.C.16 --mpi command="mpirun -n 16"

$ magao oneview --create-report=one --config=my config.lua"

= Analyses can be tweaked if necessary
= Report one corresponds to profiling and code quality analysis

= ONE View can reuse an existing experiment directory to perform further analyses

= Results available in HTML by default
= XLS files or console output available

Online help available:
$ magao oneview --help

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 16

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced analyses

= | Prof
= Profiling

$ maqao lprof xp=exp dir --mpi-command="mpirun -n 16" -- ./bt-mz.C.16
= Display

$ magao lprof xp=exp dir -df
» Displaying the results from a ONE View run

$ maqao lprof xp=oneview xp dir/lprof npsu -df

= CQA

$ magao cqga loop=42 bt-mz.C.16

Online help available:
$ maqao lprof --help

$ magao cgqa --help

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 17

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Global summary

. MA®AO clobal
Experiment summar :
p y
Application bin/bt-mz.C.16 ataset
Timestar 20181 9 16:40:1 Run <binary>

= Characteristics of the machine where the T

x86_64
- cture SKYLAKE
eX e rl m e nt to O k I a Ce Intel(R) Xeon(R) Platinum 8180 CPU & 2 50GHz
ache 39424 KB
umber of Cores 28
ampi binary. GNU 7.3.0 -ffixed-form -mtune=generic -march=xB6-64 -g -03 -fopenmp -fintrinsic-modules-path /opt/gnu/gec/7.3.0/lib/gee
ptions /x86_64-pe-linux-gnu/7.3.0/finclude
oA Potentin peedups Summary
otal) 2015 .
ompi| ions binary: -funroll-loops is missing.
H i 1.00
obal metrics H
102
3
102
. . - =
= General quality metrics derived from MAQAO
10

analyses

= Global speedup predictions
= Speedup prediction depending on the number of vectorised
loops
= Ordered speedups to identify the loops to optimise in priority

Cumulated Speedup If Fully Vectorized

Cumulated Speedup If FP Vectorized a

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Application Characteristics

Application categorisation
= Time spent in different regions of code

Function based profile e
= Functions by coverage ranges I [S S S

Loop based profile
= Loops by coverage ranges

? Loop Based Profile
? n

MABAOD cloval

Detailed loop based profile
= Loop types by coverage ranges

? Detailed Loop Based Profile
2 .

Detalled Loop Based Profile

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 19

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Application Characteristics: Time Categorisation

Identifying at a glance where time is spent

= Application
+ Main executable

= Parallelization

» Threads
= OpenMP
= MPI

= System libraries " o
= I/O operations e W
= String operations 1% :Ssmli]

= Memory management functions

= External libraries

= Specialised libraries such as libm / libmkl
= Application code in external libraries

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 20

Functions Profiling

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Identifying hotspots

= Exclusive coverage

» Load balancing across threads
= Loops nests by functions

¥ matmul_sub
o Loop 230 - solve_subs.f:71-175 - bt-mz.C.16
[z Loop 231 - scmlveisubs_f:m
¥ z_solve
W _Loop 232 - z_solve.f:53-423 - bt-mz.C.16
¥ Loop 233 - z_solve f:54-423 - bt-mz.C.16
¥ Loop 236 - z_solve f:54-423 - bt-mz.C.16
lo Loop 239 - z_solve f:146-308 - bt-mz.C.16 | Innermost
o Loop 235 - z_solve f:55-137 - bt-mz.C.16
o Loop 234 - z_solve f:415-423 - bt-mz.C.16

Single

Outermost

]\/’L\%A (j Global Application Functions Topology
[» Filters 7]
Name | Module ‘ CuNBran s Time (s) ‘ Nb Threads e
(%) (coverage)

© gomp_team_barrier_wait_end libgomp.s0.1.0.0 21.34 3.26 64 4.47
o binverhs bt-mz.C.16 16.06 2.45 64 1.10
» z_solve__omp_fn.0 bt-mz.C.16 9.84 15 64 0.52
o matmul_sub bt-mz.C.16 9.52 1.45 64 0.68
¥ y_solve__omp_fn.0 bt-mz.C.16 9.09 1.39 64 068

¥ Loop 114 - y_solve.f:4-398 - bt-mz.C.16 8.82 1.35

¥ Loop 115 - y_solve f4-398 - btmz.C.16 8.82 1.35

o Loop 118 - y_sclve.f:145-308 - bt-mz.C.16 5.85 0.89

o Loop 119 - y_solve f:55-137 - bt-mz.C.16 1.77 0.27

o Loop 116 - y_solve.f:394-398 - bt-mz.C.16 1.08 0.17

o Loop 117 - y_solve f:337-360 - bt-mz.C.16 0.12 0.02
» x_solve_._omp_fn.0 bt-mz.C.16 8.68 1.32 64 0.64
o gomp_barrier_wait_end libgomp.so.1.0.0 8.26 1.26 64 4.91
» compute_rhs__omp_fn.0 bt-mz.C.16 757 1.16 64 0.46
o mca_btl_vader_component_progress mca_btl_vader_so 362 0.55 16 1.76
o matvec_sub bt-mz.C.16 2.73 0.42 64 0.20
o lhsinit bt-mz.C.16 0.54 0.08 64 0.06

o opal_progress 0.18

» copy_x_face_._omp_fn.2 0.06
» add__omp_fn.0 0.05
o binvrhs y_solve 0.04
o ompi_coll_libnbc_progress 0.13
» copy_y_face_._omp_fn.0 1 0.05
o opal_timer_linux_get_cycles_sys_timer 0.09
o exact_solution 0.03
» copy_x_face_ _omp_fn_3 0.02
» copy_y_face__omp_fn.1 0.02
o gomp_team_barrier_wait_final 0.02
o exact_rhs__omp_fn.0 0.02
o opal_progress@plt :-ja 0.03
» initialize__omp_fn.0 5 0.01
o ompi_request_default_wait_all é 0.03
o gomp_thread_start 0.01
o Unknown kernel region 0.01

20251 2ae7s 2se@e 2efes 2eese 28262 28288 2BMee
MAOAO thread rank

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Loops Profiling Summary

Identifying loop hotspots
= Vectorisation information
= Potential speedup by Loops Index <

]\,'f @L\I‘W Global Application Functions Loops Topology

M Coverage (%) M Level M Time (s) 4 Vectorization Ratio (%) M Speedup If Clean M Speedup If FP Vectorized = Speedup If Fully Vectorized O Select none |
1 1 1 . Source . . Coverage Time |Vectorization Ratio| Speedup If Speedup If FP Speedup If Fully
O ptl | | I |Sat| O n Loop |d‘ Lines ‘ ASource File ‘ Source Function ©%) Level ‘) ©6) Clean ‘ Vectorized Vectorized
. Loop .
= Clean . Rem0V| ng address 536 146-308 bt-mz_B.16:z_solve.f z_solve Innermost 0.23 1.06 1.39
Loop .
. 313-314 bt-mz_B.16:z_solve.f z_solve Innermost 0.01 1 1
computatlons 50305;
. .. . 351-373 bt-mz_B.16:z_solve.f z_solve Innermost 0.01 1 1
. 234 - - -
= FP Vectorised: Vectorising floating- | 2
. . 23];3 415-423 bt-mz_B.16:z_solve.f Zz_solve Innermost 0.07 1.14 1.07
point computations oo
54-423 bt-mz_B.16:z_solve.f z_solve InBetween 0.01 NA NA
= Fully Vectorised: Vectorising Loop
232 55-137 btmz_B 16z_solve f z_solve Innermost 0.13 1 1
ﬂoatlng_pOInt ComPUtatlonS and Iéo[;)éj 145-307 bt-mz_B.16:y_solve.f y_solve Innermost 1 1
memory accesses ché)}j 145-307 bt-mz_B.16:y_solvef vy_solve Innermost 1.06 1.38
L;é)é) 337-360 bt-mz_B 16y_solvef y_solve Innermost 1 1
L206)§ 394-398 bt-mz_B.16:y_solvef y_solve Innermost 1.01 1.7
ché)]p 53-407 bt-mz_B.16:y_solvef y_solve OQutermost NA NA
Lzoé)f 54-398 bt-mz_B 16y_solve f y_solve InBetween NA NA
Lzoloéj 55-137 bt-mz_B.16:y_solvef y_solve Innermost 1 1
Lzo(;;) 55-137 bt-mz_B.16:y_solvef y_solve Innermost 1 1

INSTITYUTE ~HIGH-PRODUCTIVITY SUPERCOMPUTING

Loop Analysis Reports

\/1 A @/—\ {j Global Application Functions Topology

High level reports
» Reference to the source code - i

Jeee/dsku/ nts-server/user/cont001/acre/ valensic/NPB3 .3 . 1-H2 /NPB3 . 3-N2-NPT/BT-HZ//s0 Lve_t

Workaround

ablock (5, 1) "oblock (1, 1)
sllock(5,2) "bblock (2, 1)

ab.
aklc gain | potential | hint | expert
anl

t-math) to extend

applying hints will yield predicted gain - P
= Gain: Good probability S e s e o ex
= Potential gain: Average probability R cricrouna i

Workaround ide1)=>doidoj
108 -

u H i ntS : LoWe r p ro ba bi I ity l gain] potential] hint I expert P (Intel(R) Xean(R) tructures of arrays

0 i a%x(i) = bx(i)

©
k3
PR

them with the "contiguous” attribute

b set to a¥b before this loop

. . Coverage 479%
- B ttl n k descrl tl O n 71t chlock(1,1) = chlackil,1] - ablock(l,1) *bblock(1, 1) Function matmul_sub
() 63 (E(: 72: > - =block(1,2) bblock(z,1]
a5 z T ohlock(1,3) *bblock(3.1) Source file and lines solve_subs.f:71-175
74: > - sblock(l, 4) hhlock(4,1) Module bt-mzC16
. . . o T mteek(2,1) = eblackiz, 11 - eeteoes e e 1) The loop is defined in /cce/dsku/nfs-server/user/conto01 /ocre/valensic/NPE3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/s0lve_subs £ 71-175
77 > - ablock(z,2) *bhlock(z, 1)
u I n S O r I m p rov I n g pe r O rm a n Ce 78: > - sblack(2,3) *hblock(3, 1) It is main loop of related source loop which is unrolled by 2 (including vectorization)
73: > - sblock(2,4) thhlock(4,1)
a0: > - ablock(2,5) bblock(S, 1) . .
81: chblock(3,1) = cblock(3,1] - sblock(3,1) *bblock(1,1) gain | potential | hint | expert
. A a2 > - ablock(3,2) bblock(z, 1]
83: > - sblack(3,3) *hblock(3, 1)
n B4: > - sblock(3, 4) thhlock(4,1) Code clean check
851 > - ablock(3,S) fbblock(S, 1)
P chlock(4,1) = chlack(t, 1) - anleci(4,1) b lock(1,1] Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can
87: > - ablock(4,2) *bbleck(z, 1) lower the cost of an iteration from 27.00 to 25.00 cycles (1.08x speedup)
a8: > - ablock(4,3) *bblock(3, 1)
ag: > - sblock(4,4) thhlack(4,1)
> - ablock(4,5) bblock(S, 1)

w
&
v

/AVX2 processors). By fully
d).

speedu

- - entheses) in arithmetic
Type of elements and instruction set nable your compiler to
. . .) »cis avalid FMA (MUL
195 SSE or AVX instructions are processing arithmetic or math operations on double precision FP elements in 'ADD then MUL).
scalar mode (one at a time).

ctor registers). Since yoLr execution

5 a bottleneck). By
wer the cost of an iteration from 204.00 to 141.33

Matching between your loop (in the source code) and the binary loop

The binary loop is composed of 195 FP arithmetical operations:

« 70: addition or subtraction
* 125 multiply

impiler

The binary loop is loading 1760 bytes (220 double precision FP elements). The binary loop is storing 1632 bytes rresponding for’ loop

(204 double precision FP elements)

Arithmetic intensity

Arithmetic intensity is 0.06 FP operations per loaded or stored byte.

Unroll opportunity

Loop is data access bound

Workaround

Unroll your loop if trip count is significantly higher than target unroll factor and if some data references are
common to consecutive iterations. This can be done manually. Or by recompiling with -funroll-loops and/or
-floop-unroll-and-jam_

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Loop Analysis Reports — Expert View

|‘ Gain | Potential gain | Hints | Experts only |

Low level reports for performance experts | |

In the binary file, the address of the loop is: 421409

= Assembly-level
Sse eve Instruction Nb FU PO P1 P2 P3 P4 P5 P& Latency Recip. throughput
. MOVAPS %XMM13,%6XMM3 1 0.50 0.50]] Y] o 0 2 0.50
INC %RDI 1 0 o] 0] 1.50 0.50 0 1 1
= Instructions cycles costs
DIVSD 0x28(%R10.%RDX.1).%XMM5 4 1 o 0.50 0.50 0 o] 40-42 12-32
. d - h d H - MOVAPS %XMM5 %XMM15 1 0.50 0.50]] Y] o 0 2 0.50
u Instructlons Ispatc pre Ictlons MULSD %XMM5 %XMM15 1 0.50 0.50]] 0 o 0] 0.50
MOVSD %XMM5,0x12890(%R14) 1 o0 0 0.50 0.50 V] 0 1 2 1
[] M m y Iy MULSD %XMM1 5 %XMM5 1 0.50 0.50 0 [¢] V] o] 6 0.50
e O r a Cce SS a n a S I S Loop Id: 224 Module: bt-mz.C.16 0 o0 1 D) 1
ECY° ° ! !
o0 0 12 1
Hide groups 0 0 1 2 1
analysis
AS Se m b I CO d e Source: solve_subs.f:71-175 Coverage: 4.79%
Ox424e35 MOVUPS (¥RDIFRAX 8)%FAMMA [3]
0x424e39 MOVAPS %X MM5 %XMM2 D/' e
- - - - Ox424e3c MULPD %XMM4, %BXMM2 =
» Highlights groups of instructions etz LEA RO Y355 = ok 27 Lo .
Metric Value
. 0x424e48 SUBPD %xMM2, %X MM1 5 .
Coverage (% app. time) 479
aCcessin € Same MEMOIrY AUArEeSSES oursecd enoasmroimraxs)wrs
Tirme (s) 023
COA speedup if clean 1.08
COQA speedup if FP arith vectorized 165
Ox424e5e MOVAPS %xXMM1 2 %xXMM1 4
24052 MULFD SMM2 b1 CQA speedup if fully vectorized 2.00
e - CQA speedup if no inter-iteration dependency NA
H H COA speedup if next bottlenack killed 108
INternal metrics Ox42486e SUBPD BXMM1 %XMM1 5
Source solve_subs f71-175
Source loop unrall info unrolled by 2
Ox424e78 MULPD %xXMMT, %X MMO
Source loop unrall confidence level max
Ox424e7c SUBPD %xXMMO%xMMT 5
Unroll /vectarization loop type main
Unroll factor 2
CQA cycles 27.00
Ox424e8e MULPD %XMMO%XMM3
0424652 SUBRD %XMM 35X 1 5 o creles (clean z50n
% i . COA cycles if FP arith vectorized 16.32
COA cycles if fully vectorized 13.50
MOVSD 0x38(%R10,%RDX,1),%XMM3 1 0 o Front-end cycles 2250
MOVSD 0x12898(%R14),%XMM2 1 0 0 | PO cycles 25.00
MULSD %XMM 3 %XMM2 1 0.50 0.9P1 cycles 27.00
MITE SN YRS WY D 1 n&sn n P2 cycles 13.00
P3 cycles 13.00

T —
31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 24

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Application to Motivating Example

Issues identified by CQA

6) Variable number of iterations _ _
/ CQA can detect and provide hints to

do j=ni + nvaluel, nato -Uni i) v)
J 2) Non-unit stride accesses resolve most of the identified issues:

\""nj1 = ndim3d*} + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \
ul =x11 —x(nj1) ; u2 = x12 —x(nj2) ; u3 = x13 = x(nj|3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)*— 4) DIV/SQRT

Eq = qql*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses

Eqc = Eqc + Eq ; Ephob = Ephob + Ed : -
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gk . . .
glc = glc —ulg : g2¢ = g2¢ - U2g : g3c = g3c —u3g 6) Variable number of iterations
. gr(nj1, thread_num) = gr(nj1, thread_num) + ulg 7) Vector vs scalar
i gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
. _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

1) High number of statements
7) Vector vs scalar

end do 2) Non-unit stride accesses

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 25

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Application to Motivating Example

['cain T Potentia gain [ints [experts onty S
Vectorization etected 48 FMA (fused multiply-add) operations.
Presence of both ADD/SUB and MUL operations.

Your loop is partially vectorized.

Only 28% of vector register length is used (average across all SS5E/AVX instructions).
By fully vectorizing your loop, you can lower the cost of an iteration from 57.00 to 21.50 cycles (2.65x speedup).

Pro s):
Try to change order in which elements are evaluated (using parentheses) in arithmetic expressions containing both ADD/SUB and
MUL operations to enable your compiler to generate FMA instructions wherever possible.

51% of SSE/AVX instructions are used in vector version (process two or more data elements in vector reqisters):) N -
For instance a + b*c is a valid FMA (MUL thi 7 . . .
_ _ .) Gain | Potential gain || Hints § Experts only
» 24% of SSE/AVX loads are used in vector version. However (a+b)* ¢ cannot be translated into
s 0% of SSE/AVX stores are used in vector version. —
—

Cicwr Aata structures access
Petected data structures (typically arrays) that cannot be efficiently readh B

Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

+ Constant non-unit stride: 1 occurrence(s)

* Try another compiler or update/tune your current one: « Iegular (variable stride) or indirect: 1 occumence(s)

o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try
I\¥inls=-E : P T =t ihlo bt 5 inefficient”, try the VECTOR ALWAYS directive.

* Remove inter-iterations dependences from your loop and make it unit-stride:

permute loops accordingly: AR 2 otherwise. v to * 1) H I g h n U m b er Of S t ate m e n tS

Fortran storage order is column-major: do i do j ali.j) = b(i,j) (slow, non stride 1) == do i do j a(j.i) =
1)

o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA):

do i a(i)¥éx = b(i)%x (slow, non stride 1) == do i a%x(i) = b%x(i) (fast, stride 1) 2) N O n - u n I t S t r I d e aC C eS S eS
-
oo ferere 3) Indirect accesses «

Performance is limited by:

oot operations (the divide/square root unit is a bottleneck)
actor registers (the VPU is a bottleneck) I 4) D IV/S Q RT

geration from 57.00 to 48.00 cycles (1.19x speedup).

+ execution of divide and squafe
+ execution of INT/FP operations

By removing all these bottlenecks, you can lower the cost 0

Proposed solution(s): 5) Red u Ctl O ns
* Reduce the number of division or square root instructions.
If denominator is constant over iterations, use reciprocal (replace x/y with x*(1/y)).
done by your compiler with no-prec-div or Ofast.
Check whether you really need double precision. If not, switch to single precision 1o speedup execution.
* Reduce arithmetical operations on array elements

precision impact. This will be

6) Variable number of iterations

7) Vector vs scalar

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Thread/Process View

MA AO Global Application Functions Topology

Software Topology
" List of nodes

L] Processes by nOde ID | Processes | Threads | Time(s)
¥ Node ¢251-109.wrangler_tacc.utexas.edu 8 32 5.34
¥ Process 145897 4 534
[]
Th read by process o Thread 145897 534
o Thread 145933 532
o Thread 145952 532
. o Thread 145969 53
View by thread » Process 145899 4 5.34
. . > Process 145901 4 534
» Function profile at the thread or process level > Process 145903 4 534
» Process 145898 4 534
» Process 145900 4 534
» Process 145895 4 534
» Process 145896 4 534
» Node ¢251-110.wrangler.tacc.utexas.edu 8 32 5.36

| o AVERAGE 5.36

Profiling node c251-109.wrangler.tacc.utexas.edu - process 145897 - thread 145897

Name Module ‘ Cm;;aﬁr)age Time (s)

o binvcrhs bt-mz_B.16 24.34 1.3

o _INTERNAL_25_______ src_kmp_barrier_cpp_fa608613::__kmp_hy

per_barrier_gather(barrier_type, kmp_info*, int, int, void (*)(void*, v libiomp5.s0 176 0.94
oid*), void*)

» matmul_sub bt-mz_B.16 12.73 0.68
» y_solve bt-mz_B.16 7.87 0.42
» compute_rhs bt-mz_B.16 7.49 0.4
» x_solve bt-mz_B.16 7.12 0.38
» z_solve bt-mz_B.16 674 0.36

R T A ———

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 27

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports

Goal: Provide a view of the application scalability
= Profiles with different numbers of threads/processes
= Displays efficiency metrics for application

Scalability - Speed-Up and Efficiency

0.85714

Efficiency [higher is better)
Speed-Up [higher is better]

0.00000 -}

Configuration (Processes MPI - Threads OpenMP)

M Efficiency M Speed-up B Ideal Speed-up

¥ Detailed Speed-Up and Efficiency

Number of threads | Configuration {Processes MPI - Threads OpenMP} Efficiency (ideal is 1) Speed-Up Ideal Speed-Up | Time (s)
2 1- 1 546.3
3 1- 2 30066
5 1- 4 17342
<l 1- 8 11418
17 1-1 16 £8.26

oW

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports — Application View

Coverage per category
= Comparison of categories for each run

Coverage per parallel efficiency

Tsequential

» Efficiency =

Tparaliet*Nthreads

» Distinguishing functions only represented in parallel or sequential

= Displays efficiency by coverage

MAS®AO clobal

} /'7.;‘2\7 mﬂ‘ fj Global Application Functions Topology

Application Categorization ? Scalability - Coverage per Category

Scalability - Coverage per Category
Scalability - Time per Category

Function Based Profile ? 85,714

Scalability - Coverage per Parallel Efficiency
Loop Based Profile
Detailed Loop Based Profile

Application Functions

100,000

71,429 |

57.143

42.857

Coverage [¥)]

28.571

14.286 |

0.000 -4

1 12 -4 18 16
Configuration (Processes MPI - Threads OpeniP)

Topology

Resllubype: B sl (SUINEINN Scalability - Coverage per Parallel Efficiency

Scalability - Coverage per
Category

Scalability - Time per Category
Function Based Profile ?

Scalability - Coverage per Parallel
Efficiency

Loop Based Profile ?

Detailed Loop Based Profile 2

Coverage (%)

100.000

85.714 -

71.429

57.143 +

42,857

28571

14.286 |

0.000

1 1-2

0% to
0% to 108 g 0% to 20% g 20% t0 30% o 30% to 40K o 40K to 50X o 505 to 60% — 60% to 70% o 70% to 80% o 80% to 90%
W e e B ficiency ™ efficiency I efficiency W efficiency W sfficiency M efficiency l?‘gfve

ccccccccccc v

1a I 16
Configuration (Processes MP| - Threads OpendP)

uuuuuuuuuu

ALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports — Functions and Loops Views

Displays metrics for each

function/loop
= Efficiency

= Potential speedup if efficiency=1

Loops Index

Global

Application Functions

]\/[L\ @f-\ (j Global Application Functions Topology

Functions and Loops

[» Filters

1-1) Efficiency [(1-1) Potential Speed-Up (%) &=(1-2) Efficiency &1(1-2) Potential Speed-Up (%) [FA(1-4) Efficiency &(1-4) Patential Speed-Up (%) &1(1-8) Efficiency [F(1-8) Potential Speed-Up (%)
1-18) Efficiency 1-16) Potential Speed-Up (%) [Select none

(1-2) (1-4) (1-8)

Deviation {1-1) Potential Potential Potential

(coverage) |Efficiency Efficiency| Speed- |Efficiency Speed- |Efficiency| Speed- [Efficiency| Speed-
Up (34) Up (4 Up () Up (36

Name Module Cov;;ur)age Time {(s) |Nb Threads

o _INTERMAL_25_______src_kmp_barrier_cpp_ac7c2c73:__

kmp_hyper_barrier_release(barrier_type, kmp_info* int, int, int libiomps so 2402 1538 16 1862
, woid*)

a binverhs bt-mz.C.1 20.71 1327 16 622

» compute_rhs bt-mz.C.1 10.76

Topology

Loop id
Loop
215
Loop
224
Loop
192
Loop
199
Loop
169
Loop
221
Loop
189
Loop
196
Loop
165
Loop
227
Loop
220
Loop
188
Loop
216
Loop

11

[Coverage (%)
E=(1-2) Efficiency
[Select none

Source
Lines

71175

146-308

146-308

145-307

40-50

55-137

57-139

55-137

B5-67

26-28

415-423

395-399

71175

304-349

bt-mz.C.1
f

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bit-rmz.C.1

bt-mz.C.1

bt-mz.C.1
f

bt-mz.C.1

OTime (s)

Source File

salve_subs

z_solve.f
x_solvef
v_solvef
rhs.f
z_solve.f
x_solvef
v_solvef
rhs.f
add.f
z_solvef
x_solve.f

salve_subs

rhs.f

[OVectorization Ratio (%)
=11-2) Potential Speed-Up (%)

Source Function
matriul_sub
z_solve
%_salve
v_solve
compute_rhs
z_solve
%_salve
v_solve
compute_rhs
additomp_loop_0
z_solve
%_solve
matriul_sub

compute_rhs

OSpeedup If Clean OSpeedup If FP Vectorized [OSpeedup If Fully Vectorized [(1-1) Efficiency [J(1-1) Potential Speed-Up (%)
=(1-4) Efficiency FA(1-4) Potential Speed-Up (%) =(1-8) Efficiency =(1-8) Potential Speed-Up (%) =(1-16) Efficiency F(1-18) Potential Speed-Up (%)
(1-2) (1-2) Potential Speed- -4 (1-4) Potential Speed- (1-8) {1-8) Potential Speed- (1-16) {1-16) Potential Speed-

Efficiency Up (%) Efficiency Up (%) Efficiency Up (%) Efficiency Up (%90
1.51 2.49 2.99 2.96

1.34 273 262

122 1.92 2.04

1.09 1.99 211

2.95 2.3

1.56 1.66

1.28 1.26

1.18 1.12

231 1.64

1.14

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

More on MAQAO

MAQAO website: www.maqgao.org

= Documentation: www.magao.org/documentation.html
= Tutorials for ONE View, LProf and CQA
= Lua API documentation
» Latest release: http://www.magao.org/downloads.html
= Binary releases (2-3 per year)
= Core sources
= Publications around MAQAO: http://www.maqgao.org/publications.html

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 31

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO team and collaborators

MAQAO Team Past Collaborators or Team Members
= Prof. William Jalby = Prof. Denis Barthou
= Cédric Valensi, Ph D » Jean-Thomas Acquaviva, Ph D

Stéphane Zuckerman, Ph D
Julien Jaeger, Ph D

Souad Koliai, Ph D

Zakaria Bendifallah, Ph D

Emmanuel Oseret, Ph D
Mathieu Tribalat

Salah Ibn Amar

Youenn Lebras

= Romain Pillot » Tipp Moseley, Ph D

= Kévin Camus = Jean-Christophe Beyler, Ph D
Collaborators = Hugo Bolloré

= Prof. David J. Kuck = Jean-Baptiste Le Reste

= Andrés S. Charif-Rubial, Ph D = Sylvain Henry, Ph D

= Eric Petit, Ph D = José Noudohouenou, Ph D

= Pablo de Oliveira, Ph D = Aleksandre Vardoshvili

David C. Wong, Ph D
Othman Bouizi, Ph D

31ST VI-HPS TUNING WORKSHOP (UTK-ICL, KNOXVILLE/TN, USA, 09-12 APRIL 2019) 32

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention!

Questions ?

UNIVERSITE DE
Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

