e e o e VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

L

;1101
B 101107 8%
10191

MAQAO uNIversiTE DE WA

[\

VERSAILLES &=s

SAINT-QUENTIN-EN-YVELINES

Performance Analysis and Optimization Tool

{cedric.valensi, emmanuel.oseret, mohammed-salah.ibnamar}@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
Andres S. CHARIF RUBIAL - ascr@pexl.eu - PeXL
http://www.magao.org

(intel)
Cédric VALENSI, Emmanuel OSERET, Salah IBN AMAR

VI-HPS 27t Garching — Germany — 23-27 April 2018 @) PeXL
@=__ & PTG S VERAITLE &3

#) JULICH |8 aurence Livermore G0 BRRErs o

http://www.maqao.org/

Introduction
Performance analysis and optimisation

How much can I optimise my application?
= Can it actually be done?
= What would the effort/gain ratio be?

Where can I gain time?
= Where is my application wasting time?

Why is the application spending time there?
= Algorithm, implementation or hardware?
= Data access or computation?

How can I improve the situation?

= In which step(s) of the design process?
= What additional information do I need?

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

Algorithm

|

Implementation

[Source Code H Parallelisation }

|

Compilation

|

Execution

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
A multifaceted problem

Pinpointing the performance bottlenecks

Identifying the dominant issues
= Algorithms, implementation, parallelisation, ...

Making the best use of the machine features
= Complex multicore and manycore CPUs
= Complex memory hierarchy

Finding the most rewarding issues to be fixed
= 40% total time, expected 10% speedup

= 2 TOTAL IMPACT: 4% speedup _
= 209%0 total time, expected 50% speedup

= = TOTAL IMPACT: 10% speedup _

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 3

=> Need for dedicated and complementary tools

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Motivating example

Code of a loop representing ~10% walltime

1) High number of statements

/ 6) Variable number of iterations

doj=ni + nvaluel, nato 2) Non-unit stride accesses

i nj1 =ndim3d* + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \

ul =x11 —x(njl); u2 =x12 —x(nj2) ; u3 = x13 = x(n|3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)e— 4) DIV/SQRT
Eq = qgl*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses
Eqc = Eqc + Eq ; Ephob = Ephob + Ed ducti
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gk

glc =glc—-ulg; g2c =g2c—u2g; g3c =g3c—-u3g
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

i _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

end do 2) Non-unit stride accesses

Source code and associated issues:

1) High number of statements
2) Non-unit stride accesses
3) Indirect accesses

4) DIV/ISQRT

5) Reductions

6) Variable number of iterations

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

= Characterizing performance of HPC applications
= Guiding users through optimization process

= Offering complementary views

= Estimating R.O.I.

Main features:

N oo/ 1107 v

= Profiling 1101107
: : 201013

= Code quality analysis V\

Characteristics:

= Modular tool

= Support for Intel x86-64 and Xeon Phi
= LGPL3 Open Source software

= Developed at UVSQ since 2004

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 5

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Introduction
Partnerships

MAQAO was funded by UVSQ, Intel and CEA (French department of energy) through Exascale
Computing Research (ECR) and the French Ministry of Industry through various FUI/ITEA projects

(H4H, COLOC, PerfCloud, ELCI, etc...) onversiTé ot [/-7
VERSAILLES &= intel

SAINT-QUENTIN-EN-YVELINES

Provides core technology to be integrated with other tools:

= TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
= ATOS bullxprof with MADRAS through MIL

= Intel Advisor

= INRIA Bordeaux HWLOC

PeXL ISV also contributes to MAQAO:
= Commercial performance optimization expertise G P XI_
= Training and software development

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 6

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Success stories

MAQAO was used for optimizing industrial and academic HPC applications:
= QMC=CHEM (IRSAMCQC)

= Quantum chemistry
= Speedup: > 3x
= Moved invocation of function with identical parameters out of loop body

= Yales2 (CORIA)

= Computational fluid dynamics
= Speedup: up to 2.8x

= Removed double structure indirections

= Polaris (CEA)

= Molecular dynamics
= Speedup: 1.5x - 1.7x

» Enforced loop vectorisation through compiler directives

= AVBP (CERFACS)
= Computational fluid dynamics
= Speedup: 1.08x - 1.17x

» Replaced division with multiplication by reciprocal
= Complete unrolling of loops with small number of iterations

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 7

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Some MAQAO Collaborators

= Prof. William Jalby = Tipp Moseley, Ph D

= Prof. Denis Barthou = David C. Wong, Ph D

= Prof. David J. Kuck = Jean-Christophe Beyler, Ph D
= Andrés S. Charif-Rubial, Ph D = Mathieu Tribalat

= Jean-Thomas Acquaviva, Ph D = Hugo Bolloré

= Stéphane Zuckerman, Ph D = Jean-Baptiste Le Reste

= Julien Jaeger, Ph D = Sylvain Henry, Ph D

= Souad Koliai, Ph D = Salah Ibn Amar

= Cédric Valensi, Ph D = Youenn Lebras

= Eric Petit, Ph D = Othman Bouizi, Ph D

= Zakaria Bendifallah, Ph D = José Noudohouenou, Ph D
= Emmanuel Oseret, Ph D = Aleksandre Vardoshvili

Pablo de Oliveira, Ph D = Romain Pillot

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 8

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: Analysis at binary level

Advantages of binary analysis:
= Compiler optimizations increase the distance between the executed code and the source
= Source code instrumentation may prevent the compiler from applying some transformations

|II

We want to evaluate the “real” executed code: What You Analyse Is What You Run
Main steps:

= Reconstruct the program structure

= Relate the analyses to source code

= A single source loop can be compiled as multiple assembly loops Loop Source
= Affecting unique identifiers to loops L255@file.c

- Peel/Prolog
. ~ ASM
@ vair
) Tail/Epilog
,

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 9

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO Main structure

Application

Lua API
+ Characteristics
Internal
Representation
/] l

Introduction
MAQAO Methodology

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Decision tree

Profiling

Loops of interest

Analysis

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

CPU oriented

Code Quality Analysis

Differential analysis

Value Profiling

Memory oriented

Memory behaviour
characterization

Differential analysis

11

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Performance Evaluation - Profiling results

Time categorization - bin/bt-mz.C.16

[| Application

[] MPI
OpenMP
L | Math
[System _
L | Pthread
|| 10
M| String manipulation
Memary operations E
[] Others =
G
=®
- Hotspots - Functions
Name Median Excl %Time Deviation
binvecrhs 30.06 487
» matmul_sub 13.19 1.02 126 T31 T36
E.I:IES'TAL_ZE src_kmp_barrier_cpp_3736d5c3:__kmp_hyper_barrier_release(barrier_type, kmp_info®, int, int, I 50.92 MAQAO thread rank
» z_solve 10.46 0.46
» compute_rhs 887 0.48
» y_solve 8.1 0.44
» x_solve 791 0.41
» matvec_sub 437 017
MPIDI_CH3I_Progress am 12
binvrhs 0.59 0.02
__kmp_terminate_thread 0.56 0.1
b Ihsinit 0.54 0.02

» add#omp_loop_0 0.39 0.02

MAQAO LProf: Lightweight Profiler
Introduction

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Goal: Lightweight localization of application hotspots

Features:

= Sampling based

= Access to hardware counters for additional information
= Results at function and loop granularity

Strengths:

= Non intrusive: No recompilation necessary
= Low overhead

= Agnostic with regard to parallel runtime

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

13

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Time categorization

Identifying at a glance where time is spent

Time categorization - bin/bt-mz.C.16

= Application B Application
= Main executable
= Parallelization w
» Threads OpeniP
= OpenMP [Math
= MPI
. . | System
= System libraries
= I/O operations = ihreac
= String operations H 10
= Memory management functions W String manipulation

= External libraries
= Specialised libraries such as libm / libmkl
= Application code in external libraries

Memory operations

[| Others

MAQAO LProf: Lightweight Profiler
Functions hotspots

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Focusing on user time:
= Function hotspots

» matmul_sub
z_solve
com pute_rhs
y_solve
x_solve
__kmp_terminate_thread
matvec_sub

__kmp_yield

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

2.05
419
3.28
3.1
2.85
2.1
1.64
0.73

8.97
3.25
3.89
3.67
3.24
1.27
1.14
017

15

MAQAO LProf: Lightweight Profiler
Functions hotspots

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

Focusing on user time:
= Function hotspots
= Load balancing across the threads/processes/nodes

¢ matmul_sub
Z_solve

Load balancing view

compute_

v-selve ' Sorted Load balancing view

¥_solve
__kmp_termis Node view
matvec_sub

__kmp_yield

53.05
419
3.28
3.1
2.85
2.1
1.04
0.73

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

8.97
5.25
3.80
3.67
3.24
1.27
1.14
017

16

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Functions load balancing

Focusing on user time:
= Function hotspots
= Load balancing across the threads/processes/nodes

¢ matmul_sub
b Z_solve

p compute_rhs

% of Time

b y_solve
b ¥_solve

__kmp_terminate_thread

¢ matvec_sub
T28 T21 T35 T41

__kmp_yield MAOAQO thread rank

MAQAO LProf: Lightweight Profiler
Loops hotspots

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Analysing the time spent at loop level:

» Finding the most time consuming

» Providing loop id for further MAQAO analyses
» matmul_sub

« |oops

o Loop 222 - solve_subs £:71-175

o Loop 221 - solve_subs.f:71-175

w z_solve

- loops

r Loop 223 - z_solve f:53-423

+ Loop 225 - z_solve f:54-423
+~ Loop 228 - z_solve f:54-423
o Loop 224 - z_solve f:313-314
o Loop 227 - z_solve f-55-137
o Loop 226 - z_solve.f:415-423
o Loop 229 - z_solve f:351-373
o Loop 230 - z_solve.f:146-308

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

5.05
2.92
0.5
2.44
419
419

0.06
0.15
1.4
0.73
0.06
1.61

8.97
2.85
011
1.85
5.25
3.24

0.02
0.02
0.7
o1g
0.02
0.78

Loop hierarchy

Single

! Outermost

18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

|Gain Potential gain | Hints | Experts only |

3 In the binary file, the address of the loop is: 421409
analysis v P
i . q Instruction Nb FU PO P1 P2 P3 P4 P5 P6 Latency Recip. throughput
/Kmghts Landing micro-architecture).
MOVAPS %XMM13 %XMM5 1 0.50 0.50 4] 4] o0 0 4] 2 0.50
INC %RDI 1 o} 0 o 0 1.50 0.50] 1 1
- Source loop ending at line 137 in .../NPB3.3-MZ-MPI/BT-MZ/z_solve.f DIVSD 0x28(%R10 %RDX,1),%XMMS 4 1 0 050 050 O 0 0 4042 12-32
It is composed of the loop 227 MOVAPS 38XMM5 %XMM15 1 0.50 0.50 4] 4] o 0 4] 2 0.50
-~ MAQAO binary loop id: 227 MULSD %XMM5_ %XMM15 1 0.50 0.50] 0 0 0] 6 0.50
i . . MOVSD %XMM5 . 0x12830(%R14) 1 0 0 0.50 0.50 0 0 1 2 1
The loop is defined in /timp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve.f:55-137 MULSD %XMM1 5 %XMM5 1 050 050 0O 0 o o 0 & 0.50
o . .
?A of peak computational performance is used (0.79 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz)) MOVSD %XMM15.0x12898(%R14) 1 0 o 050 050 O o] 2]
\‘ Gain | Potential gain | Hints | Experts only o 0 1 2 1
‘ 0 0 1 2 1
all 13% 0 0 12 1
Your loop is probably not vectorized.
Only 13% of vector register length is used (average across all SSE/AVX ins load 15% 0 0 1 2 1
By vectorizing your loop, you can lower the cost of an iteration from 92.0 0 0 1 2 1
Store and arithmetical SSEfAVX instructions are used in scalar version (g store 12% 0 0 1 2 1
Since your execution units are vector units, only a vectorized loop can use mul 12%
Proposed solution(s): 0 0 o 3 0.50
i | . add-sub 12% o 0 0 s 0.50
* Try another compiler or update/tune your current one
o use the vec-report option to understand why your loop was other 2 0 0 0 6 0.50
the IVDEP directive. If, using IVDEP, "vectorization possible bu 0 0 o 5 0.50
s Remove inter-iterations dependences from your loop and make it u
o If your arrays have 2 or more dimensions, check whether el 0 0 o 6 0.50
permute loops accordingly: N — . - . . i 0 [v] 0 2 0.50
Fortran storage order is column-major. do i do jalij) = by = Assuming all data fitinto the L1 cache, each iteration of the binary loop takes 92.00 cycles. At this rate: . . - !
1
o If your loop streams arrays of structures (AoS), try 1o use stru * 4% of peak load performance is reached (5.13 out of 128.00 bytes loaded per cycle (CB/s @ 1GHz)) 0 0 o 5 0.50
do i a(ix = b{igkx (slow, non stride 1) => do 1 aéx(i} = b¥x(i * 7% of peak store performance is reached (4.561 out of 64.00 bytes stored per cycle (GB/s @ 1GHz)) 0 0 0 6 0.50
0 0 1 2 1
0 0 1 2 1
Found no such bottlenecks but see expert reports for more complex bott
o0 0 4] 5 0.50
Performance is limited by instruction throughput (loading/decoding program instructions to execution core) (front-end is a 0 0 0 6 0.50
Source loop ending at line 308 in .../NPB3.3-MZ-MPI/B- | bottleneck).] 0 1 2 1
Source loop ending at line 314 in .../NPB3.3-MZ-MPI/B1-m</ z_soive.T LI UL TANIN | UA GG, TN, 1) ' u u voau wou O 0 12 1
Source loop ending at line 373 in .../NPB3.3-MZ-MPI/BT-MZ/z_solve.f MOVSD 0x38(%R10.%RDX,1),%XMM3 1 0 0 0.50 050 0 0 o 3 0.50
FS 1 ali P PECY fa1nna o aa7 samu /o as L £ MOVSD 0x12898(%R14) ¥XMM2 1 o} 0 0.50 0.50 0 0] 5 0.50
MULSD %XMM3 %XMM2 1 0.50 0.50 4] 4] o0 0 4] 6 0.50
RATIE SN YRARAS &Y RARA D 1 N SN n SN n n n n n [~ nsn

e
27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 19

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Introduction

Goal: Assist developers in improving code performance

Features:
= Evaluates the quality of the compiler generated code
= Returns hints and workarounds to improve quality

= Focuses on loops
= In HPC most of the time is spent in loops

» Targets compute-bound codes

Static analysis:
= Requires no execution of the application
= Allows cross-analysis

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 20

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Processor Architecture: Core level

Most of the time, applications only exploit at best 5 to 10% of the peak performance.

Main elements of analysis:

= Peak performance

= Execution pipeline

= Resources/Functional units Same instruction - Same cost

Key performance levers for core level efficiency:

L
= Vectorizing Prog)e(scslatll:g to
= Avoiding high latency instructions if possible ...-....

» Having the compiler generate an efficient code

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 21

MAQAO CQA: Code Quality Analyzer

Output

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

High level reports:

= Reference to the source code
= Bottleneck description

= Hints to improve performance

= Reports categorized by confidence level
»= gain, potential gain

Low level reports for performance experts
= Assembly-level

= Instructions cycles costs

= Instructions dispatch predictions

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

* Source loop ending at line 137 in .../NPB3.3-MZ-MPI/BT-MZ/z_solve.f

It is composed of the loop 227
~ MAQADO binary loop id: 227

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve.f:55-137
2% of peak computational performance is used (0.79 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz))

| Gain | Potential gain | Hints | Experts only |

Your loop is probably not vectorized.

Only 13% of vector register length is used (average across all SSE/AVX instructions)

By vectorizing your loop, you can lower the cost of an iteration from 92.00 to 12.13 cycles (7.59x speedup)

Store and arithmetical SSE/AVX Instructions are used in scalar version (process only one data element in vector registers)
Since your execution units are vector units, only a vectorized loop can use their full power

Proposed solution(s):

e Try another compiler or update/tune your current one
© use the vec-report option to understand why your loop was not vectorized. If “existence of vector dependences”, try
the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”, try the VECTOR ALWAYS directive
e Remove inter-iterations dependences from your loop and make it unit-stride
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to
permute loops accordingly
Fortran storage order is column-major: do i do j a(i,j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) (fast, stride
1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA)
do | a(i)¥x = b(i)%¥x (slow, non stride 1) => do | a%x(l) = b%x(i) (fast, stride 1)

22

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Compiler and programmer hints

Compiler can be driven using flags and pragmas:

= Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
= Forcing optimization (unrolling, vectorization, alignment, ...)

= Bypassing conservative behaviour when possible (e.g. 1/X precision)

Implementation changes:

= Improve data access
» Loop interchange
= Changing loop strides

= Avoid instructions with high latency

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 23

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Application to motivating example

Issues identified by CQA

6) Variable number of iterations _ _
/ CQA can detect and provide hints to

do j=ni + nvaluel, nato -Uni i) .)
J 2) Non-unit stride accesses resolve most of the identified issues:

\""nj1 = ndim3d*} + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel \
ul =x11 —x(nj1) ; u2 = x12 —x(nj2) ; u3 = x13 = x(nj|3)

rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*gEold())

rij = demi*(rvwi + rvwalcl1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)*— 4) DIV/SQRT

Eq = qgl*qq(j)*drtest

ntj = nti + ntype())

Ed = ceps(ntj)*drtest2*drtest2*drtest2 3) Indirect accesses

Eqc = Eqc + Eq ; Ephob = Ephob + Ed : -
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 5) Reductions 5) Reductions

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gk . . .
glc = glc —ulg ; g2¢ = g2¢ - U2g : g3c = g3c —u3g 6) Variable number of iterations
. gr(nj1, thread_num) = gr(nj1, thread_num) + ulg 7) Vector vs scalar
i gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
. _gr(nj3, thread_num) = gr(nj3, thread_num) + u3

1) High number of statements
7) Vector vs scalar

end do 2) Non-unit stride accesses

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 24

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Application to motivating example

['cain T Potentia gain [ints [experts onty S
Vectorization etected 48 FMA (fused multiply-add) operations.
Presence of both ADD/SUB and MUL operations.

Your loop is partially vectorized.

Only 28% of vector register length is used (average across all SS5E/AVX instructions).
By fully vectorizing your loop, you can lower the cost of an iteration from 57.00 to 21.50 cycles (2.65x speedup). Try to change order in which elements are evaluated (using parentheses) in arithmetic expressions containing both ADD/SUB and
MUL operations to enable your compiler to generate FMA instructions wherever possible.

51% of SSE/AVX instructions are used in vector version (process two or more data elements in vector reqisters):) N -
For instance a + b*c is a valid FMA (MUL thi 7 . . .
. . .) Gain | Potential gain || Hints | Experts only
» 24% of SSE/AVX loads are used in vector version. However (a+b)* ¢ cannot be translated into

s 0% of SSE/AVX stores are used in vector version.

Pro s):

Cicwr Aata structures access
Petected data structures (typically arrays) that cannot be efficiently readh B

Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

+ Constant non-unit stride: 1 occurrence(s)

* Try another compiler or update/tune your current one: « Iegular (variable stride) or indirect: 1 occumence(s)

o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try
I\¥inls=-E : P T =t ihlo bt 5 inefficient”, try the VECTOR ALWAYS directive.

* Remove inter-iterations dependences from your loop and make it unit-stride:

permute loops accordingly: AR 2 otherwise. v to * 1) H I g h n U m b er Of S t ate m e n tS

Fortran storage order is column-major: do i do j ali.j) = b(i,j) (slow, non stride 1) == do i do j a(j.i) =
1)

o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA):

do i a(i)¥éx = b(i)%x (slow, non stride 1) == do i a%x(i) = b%x(i) (fast, stride 1) 2) N O n - u n I t S t r I d e aC C eS S eS
-
oo ferere 3) Indirect accesses «

Performance is limited by:

oot operations (the divide/square root unit is a bottleneck)
actor registers (the VPU is a bottleneck) I 4) D IV/S Q RT

geration from 57.00 to 48.00 cycles (1.19x speedup).

+ execution of divide and squafe
+ execution of INT/FP operations

By removing all these bottlenecks, you can lower the cost 0

Proposed solution(s):

5) Reductions

* Reduce the number of division or square root instructions.
If denominator is constant over iterations, use reciprocal (replace x/y with x*(1/y)).
done by your compiler with no-prec-div or Ofast.

Check whether you really need double precision. If not, switch to single precision 1o speedup execution.

* Reduce arithmetical operations on array elements

precision impact. This will be

6) Variable number of iterations

7) Vector vs scalar

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator

|_'b' Detailled Application Categorization

Function Based Profile

Application Functions
Experiment Summary
w 07 7 77 77 | a0
Application ftmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/bin/bt-mz.C.16 s — o _
Timestamp 2018-04-20 10:42:13 g 604 | =
Experiment Type MPI; OpenMP; c o | oo
Machine ceres o g
Architecture x86_64 2 a0 5
Micro Architecture KNIGHTS_LANDING Z L 50
Model Name Intel(R) Genuine Intel(R) CPU 0000 @ 1.30GHz - 309
Cache Size 1024 KB ¥ CQA Potential Speedups N |
Number of Cores 64 COA Potential Speedups Summa i & r2
- 10| 1 5
Global Metrics i i ’ 0 0 S 1 7 a T
0 0
Total Tlme (S) 49 27 » 8% 4% to B% 2% to 4% 1% to 2% 0.5% to 1% 0.25% to 0.5% 0.125% to 0.25% < 0.125%
{ 1.00 M Number of Functions [l Coverage o
64.72
1.03 1.08
12
1.21
13 1.06 s
1.60 86% Binary
L A (IR IR I [T P R R PP MPI
1.04 4 W Memory
W System
1.02
.Ml T
1.00 M
17 248/ A7 R 9INMIMI?7I1VIAIRIATITIRIGIN 2122227478 7A2T 282920 21 22 12124 AR WA A7 M 1T AN AT 47 47 44 45 4R AT AR 495N K1 R7 KRR

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) I _

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
Introduction

Automating the full analysis process
» Invocation of the MAQAO modules
= Generation of aggregated performance views as HTML or XLS graphs

Configuration d Reports h
file
Application n
_ /

- l --------------------- D

Other
-prof = R =

_ MAQAO analysis modules .

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample: Global View

‘V CQA Potential Speedups
AO Global Application Functions
Experiment Summary e
Application fimp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/bin/bt-mz.C.16 s
Timestamp 2018-04-20 10:42:13
Experiment Type MPI; OpenMP; . U N 2 e |
Machine ceres)
Architecture x86_64
Micro Architecture KNIGHTS_LANDING 1o
Model Name Intel(R) Genuine Intel(R) CPU 0000 @ 1.30GHz
Cache Size 1024 KB NAUNREE it
Nun"iber(}f COFES 64 12345678 91011121314151617181920212223 24252627 28293031323334 353637 38394041 424344 45464748 495051525354 55 56575859 606162 636406566 676869 70717273 7475767778 7980 818283 84858687 B389 9091 9293 94 9596 97 98 99100010403
L M Iif Clean If FP vectorized If fully vectorized

Global Metrics ¥ Ordered Speedups If Fully Vectorized
Total Time (s) 49.27 '
Compilation Options binary: -Xhost or XCORE-<> is missing. I S S P PR R A
Flow Complexity 1.00 PR B R
Array Access Efficiency (%) 64.72
Clean Potential Speedup ~ 1.03
Nb Loops to get 80% 12

: Potential Speedup ~ 1.21
FPVECtonSEd N b LO{)pS to get 80% 1 3

, Potential Speedup ~ 1.60
Fu"}‘fvec‘onseu N b LOUPS to get 0% 1 7
Potential Speedup
DataInL1Cache Nb Loops to get 80% 1o
e b 23 23 2Hfinary_: 204 1%h 2 1%inary._; 2 1inary_ 1% 23 148 1dHinary_; 2Minary_20Hinary_ 21 2[Binary_ 18 2Hinary_ 1% 23 21 108inary_ 144 1Hinary_ 166i 1Zbinary_ 98 22%inary_
M| Cumulated Speedup If Fully Vectorized

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) I _

MAQAO ONE View: Performance View Aggregator
GUI sample: Application Characteristics

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Application

Application Categorization

86%

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018)

Functions

| OMP
Binary
MPI

B Memory

Ml System

| » Detailled Application Categorization

Function Based Profile

100 120
%0
90 +
95 95 I 100
80| = L
70
- 7] 77 - 80
2
g —
B o0 1 @
g’ =2
g
z o
5 50 4 60 En
e 5
5 e
E 40 I
£
z 40
30 +
20 4
20
13
10 ;
3 5 3 4
0 0 1 Y ! ! ! 2
o | — Lo
= B% 4% to 8% Hto 4% 1%t 2% 0.5% to 1% 0.25% to 0.5% 0.125% to 0.25% < 0.125%

Coverage Range

M| Mumber of Functions Coverage over Range Cumulated Coverage

Loop Based Profile

35 14
30 12 12
28
0 10
25 » — k10
a _
5 =
g 204 7 L
5 &
. o
5 ©
o < o
£ 15 Lo 2
=} 5 o
z
10 X
7
343 a 3
v
54 q L2
2
0 0 o 0 o0 0 0 0t ! 0
0
> 8 £ to 8% % to 4% 1% to 2% 0.5% to 1% 0.25% to 0.5% 0.125% to 0.25% < 0.125%
Coverage Range
B Number of Loops [Coverage over Range [Cumulated Coverage

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample: Functions and Loops Views

MA®AO

Global Application

Functions and Loops

Right-click on a line to display the associated load balancing.
Double click on a loop to display its analysis details.

Functions

Name

o binverhs

¥ matmul_sub
o Loop 224 - solve_subs.f:71-175 - binary
o Loop 225 - solve_subs.f:71-175 - binary

» z_solve

o _INTERNAL_25

kmp_info*, int, int, int, void*)

» compute_rhs

» y_solve

> x_solve

» matvec_sub

o MPIDI_CH3I_Progress

o binvrhs

» |hsinit

o __kmp_terminate_thread

» add#omp_loop 0

o _INTERNAL_25 src_kmp_barrier_cpp_3736d5c:

kmp_info*, int, int, void (*){void*, void*), void*)

__kmp_yield

copy_x_face#omp_loop_0

copy_y_face#omp_loop_0

exact_solution

task_tick_fair

rcu_check_callbacks

copy_x_face#omp_loop_1

apic_timer_interrupt

__kmpc_for_static_init_4

trigger_load_balance

ktime_get

copy_y_face#omp_loop_1

__hrtimer_run_queues

ktime_get update offsets _now

run_timer_sofiirg

clear_page_c_e

avart rheffnmn raninn N

o000 WooooW¥WooVWV¥VYo

6.5

6.0+

554

504

45+

404

354

304

Coverage

154

104

054

0.0+

94331

94365

src_kmp_barrier_cpp_3736d5c3::__kmp_hyper_barrier_release(barrier_type,

94262

Coverage
Module ‘ (%)
binary 30.34
binary 13.25
6.07
1.36
binary 10.54
libiomp5.s0 9.84
binary 8.93
binary 8.07
binary 7.88
binary 45
libmpi.so0.12.0 0.89
binary 06

binary - Loop 224

94323 94345 94363
MAQAO thread rank

‘Timo (s)‘ Th s ‘ Deviation
502 64 224
655 64 0.93

3

067

521 64 0.68
487 64 7.04
442 64 064
399 64 0.65
3.9 64 0.65
223 64 0.40
044 16 0.94
0.3 64 0.06

Loops Index

Functions

WY | @/_\ O Global Application
Double click on a loop to display its analysis details.
Loopid ‘ Source Source File
Loop 224 71-175 binary:solve_subs.f
Loop 233 146-308 binary:z_solve.f
Loop 230 55-137 binary:z_solve.f
Loop 200 146-308 binary:x_solve.f
Loop 207 145-307 binary:y_solve.f
Loop 204 55-137 binary:y_solve.f
Loop 187 57-139 binary:x_solve.f
Loop 229 415423 binary:z_solve.f
Loop 122 304-349 binaryrhs.f
Loop 148 194-238 binary:rhs.f
Loop 196 395-399 binary:x_solve.f
Loop 225 71-175 binary:solve_subs.f
Loop 162 83-132 binary:rhs.f
Loop 221 23-27 binary:solve_subs.f
Loop 203 394-398 binary:y_solve.f
Loop 223 23-27 binary:solve_subs.f
Loop 170 40-50 binary:rhs.f
Loop 227 313-314 binary:z_solve.f
Loop 105 388-391 binaryrhs.f
Loop 206 337-360 binary:y_solve.f
Loop 166 65-67 binary:rhs.f
Loop 236 26-28 binary:add.f
Loop 189 342-364 binary:x_solve.f
Loop 12 227-234 binary:initialize.f
Loop 155 157-160 binary:rhs.f
Loop 222 23-27 binary:solve_subs.f
Loop 130 265-268 binaryrhs.f
Loop 92 431-433 binary:rhs.f
Loop 232 351-373 binary:z_solve.f
Loop 214 247-249 binary:exch_gbc.f
Loop 218 207-208 binary:exch_gbc.f
Loop 107 388-391 binaryrhs.f
Loop 36 18-23 binary:exact_solution.f
Loop 140 265-268 binary:rhs.f
Loop 160 139-151 binary:rhs.f
Loop 216 258-260 binary:exch_gbc.f

Source Function

matmul_sub
z_solve

z_solve

x_solve

y_solve

y_solve

x_solve

z_solve
compute_rhs
compute_rhs
X_solve
matmul_sub
compute_rhs
matvec_sub
y_solve
matvec_sub
compute_rhs
z_solve
compute_rhs
y_solve
compute_rhs
add#omp_loop_0
x_solve

lhsinit
compute_rhs
matvec_sub
compute_rhs
compute_rhs
z_solve
copy_x_face#omp_loop_0
copy_y_face#omp_loop_0
compute_rhs
exact_solution
compute_rhs
compute_rhs
copy_x_face#omp_loop_1

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample: CQA Output

¥ COA Report
The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve f:415-423

¥ Path 1

T\ﬂ‘#‘\@/‘\{w Global Application Functions 2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz))
[gain T potential T hint T expert

Loop 226 Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing
Coverage 051 % them, you can lower the cost of an iteration from 65 00 to 57 .00 cycles (1.14x speedup).

Function z_solve Workaround
Source file and lines z_solve f:415-423

» Try to reorganize arrays of structures to structures of arrays
Module binary « Consider to permute loops (see vectorization gain report)

e To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the
"contiguous” attribute (Fortran 2008)
s For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b

¥ Source Code

/twp/NPB3.3.1-MZ/NPB3. 3-MZ-MPI/BT-MZ//z_solve.f: 415 - 423 before this loop
415: do k=ksize-1,0,-1 Vectorization

416: do m=1,BLOCK SIZE

417: do n=1,BLOCK_SIZE

Your loop is not vectorized 8 data elements could be processed at once in vector registers. By vectorizing your
loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

419: > - 1hs(m,n,cc, k) *rocmp (n, k+1)
220: enddo Workaround
421:

rhe (m,i,j,k) = rtmp(m, k)

418: rtomp (m, k) = rtmp(m, k)

422: enddo « Try another compiler or update/tune your current one:

:225 enddo o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
2251 enddo dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”,
426: enddo try the VECTOR ALWAYS directive.

= Remove inter-iterations dependences from your loop and make it unit-stride:
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
» Assem b|y Code otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j a(i,j)) =
b(i,j) (slow, non stride 1) == do i do j a(j,i) = b(i,j) (fast, stride 1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i
ali)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

VIRTYALAINSTITYUTE

MAQAO ONE View: Performance View Aggregator
GUI sample: Advanced Loop Metrics

-*HIGH-PRODUCTIVITY SUPERCOMPUTING

¥ Other static metrics

¥ Advanced static metrics

¥ Path 1
Metric
Coverage (% app. time)
Time (s)

CQA speedup if clean

CQA speedup if FP arith vectorized
CQA speedup if fully vectorized
CQA speedup if no inter-iteration dependency
CQA speedup if next bottleneck killed
Source

Source loop unroll info

Source loop unroll confidence level
Unroll/vectorization loop type
Unroll factor

CQA cycles

CQA cycles if clean

CQA cycles if FP arith vectorized
CQA cycles if fully vectorized
Front-end cycles

PO cycles

P1 cycles

P2 cycles

P3 cycles

P4 cycles

PS5 cycles

P6 cycles

P7 cycles

DIV/SQRT cycles

Inter-iter dependencies cycles

Nb insns

Value
0.51
0.24
1.14
1.66
g0
NA
1.02
z_solve f:415-423
not unrolled or unrolled with no peel/tail loop
max
NA
NA
65.00
57.00
39.23
812
65.00
25.00
25.00
35.00
35.00
450
450
30.00
NA
0.00

128

¥ Memory Groups

0x422aal INC%R10

0x422aae MULSD %XMM7 %XMM8

0x422ac7 SUBSD %XMM8 2%XMM13

Size: 25

Pattern: LLLLLLRLELLELRERELELLLLLL
Span: 200

Head: 0

Unroll factor: 5

Stride status: Success

Stride: -600

Accessed memory status: Success
Accessed memory: 200

Accessed memory without overlapping: 200
Accessed memory reused: 0

0x422b30 MULSD %¥XMM4 %XMM11

0x422b3f SUBSD %XMM11 %XMM13

0x422b58 MULSD %XMM3 %XMM1 2

0x422b67 SUBSD %XMM1 2 %XMM1 3
0x422b80 MULSD %XMM7 %XMM14

0x422b8d SUBSD %XMM14,%XMM10

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View: Performance View Aggregator
GUI sample: Help

” ' AO Global Application Functions

A full help is available on the MAQAO website.

¥ Help about "Global” tab

The Global tab is the report index and it presents several sections

¢ The first one presents some parameters about the experiment and the machine used in a first table.
« A second one presents some metrics summarizing the application performances. Metrics are highlighted from green to red to signal best to worse performance.
¢ Next sections contains several charts detailing potential speedups obtainable under specific conditions,according to the number of loops modified to satisfy the condition. Charts are available
under conditions:
o CQA Potential Speedups charts need that LPROF and CQA modules are available in MAQAO and enabled in the report;
Charts in CQA Potential Speedups present speedups obtainable if the assembly code is modified to satisfy some conditions:
o If Code Clean means that all instructions which do not perform floating-point computation or memory accesses are deleted. Instructions used to handle the loop control flow are not
included in the instructions set to remove.
o If FP Vectorized means that all instructions performing floating-point computation are vectorized
o If Fully Vectorized means that all instructions performing floating-point computation and all memory accesses are vectorized.

All sections contain two types of charts:
o One summary chart where the X axis represents the number of loops to modify in order to obtain the speedup;
o At least one ordered chart where the X axis represents loops identifiers to modify in order to obtain the speedup.These charts can be opened or collapsed by clicking on the
corresponding header.
The last section contains all parameters from the experiment configuration file.

v Help about "Application" tab

The tab Application presents several charts:
A first one presents a chart detailing in which categories the time is spent.
Two charts with a profile of the application. The first one is at the function level and groups functions by their coverage, the second one is at the loop level and groups loops by their coverage.

v Help about "Functions" tab

The Functions tab lists all used functions with their coverage. By clicking on the arrow on the left of any functions, the box can be opened to reveal all profiled loops belonging to the function
represented as a three. Loops can also be opened by clicking on the left arrow. If a loop has a circle instead of an arrow, it means it is an innermost loop. All coverages are global to the application.
By right-clicking on a function or a loop, a chart presenting the load balancing between processes is displayed.

R T A ———

27TH VI-HPS TUNING WORKSHOP (LRZ, 23-27 APR 2018) 33

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention!

Questions ?

UNIVERSITE DE
Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

