VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

;1101
B 101107 8%
10191

NS

UNIVERSITE DE gw

=

VERSAILLES «=>

SAINT-QUENTIN-EN-YVELINES

MAQAO
Performance Analysis and Optimization Tool (i’ntel‘>

Andres S. CHARIF-RUBIAL

andres.charif@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
http://www.magao.org
VI-HPS 18th Grenoble - 18/22 May 2015

i
§
|
®
|

Technische G UNIVERSITE DE
I“m Universitat s Universitat Stuttgart VERSAILLES

Miinchen ST-QUENTIN-EN-YVELINES
THE
i TENNESSE

o . TECHNISCHE
#4) JoLicH |8 trmncs Cverers O O

http://www.maqao.org/

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

MAQAO Framework and Toolsuite

R&D Team: develop performance evaluation and optimization tools

Open Source software (LGPL 3)

= Currently only binary release (source => ongoing)

= Profilers (generic and MPI) work on any LSB/Most Unix

= Code quality analysis and hardware counters support only available
for Intel x86-64 and Xeon Phi

Funded by UVSQ, Intel and CEA (French department of energy)

Establish partnerships:
= Optimize industrial applications

= Provide building blocks (framework services) to other tools:

= TAU tool tau_rewrite: binary rewrtting feature (MIL)
= ATOS/BULL tool bullxprof : binary rewrtting feature (MIL)

uNIVERSITE DE WA

= =

VERSAILLES ==

SAINT-QUENTIN-EN-YVELINES

\\

[\

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (1/2)

= Characterize the performance of an application

» Complex multicore CPUs and memory systems
= How well does it behaves on a given machine

= Generally a multifaceted problem
= What are the issues (numerous but finite) ?
= Which one(s) dominates ?
» Maximizing the number of views
= => Need for specialized tools

= Three main classes of issues
» Find/Select relevant algorithms
= Work sharing/decomposition
= Exploiting performance available at CPU level

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 3

Introduction
Performance analysis (2/2)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Motivating example: loop ~10% walltime

Variable number of iterations

/ Non-unit stride accesses

do j = ni+nvaluel,nato
njl = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel
ul = x11 - x(njl1); u2 = x12 - x(nj2) ; u3 = x13 - x(nj3)
rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

Eqc = Eqc + Eq ; Ephob = Ephob + Ed
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 | l

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gE Reductions
glc =glc-ulg; g2c =g2c-u2g; g3c =Qg3C-u3g
gr(njl,thread num) = gr(nj1,thread_ num) + ulg}

5 rij = demi*(rvwi+rvwalcl1(j))

L_rB drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2) «—DIV/SQRT
n Eq = qql*qq(j)*drtest

o ntj = nti + ntype(j) Indirect
] = i)* * *

= Ed = ceps(ntj)*drtest2*drtest2*drtest? = Gt
S

0

()

>

High number of statements

gr(nj2,thread_num) = gr(nj2,thread_num) + u2g
- gr(nj3,thread_num) = gr(nj3,thread_num) + u3g

end do Non-unit stride accesses

Source code and associated issues:

1) High number of statements
2) Non-unit stride accesses

3) Indirect accesses
4) DIVISQRT

5) Reductions
6) Vector vs Scalar

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: working at binary level (1/2)

Why ???
Most of the time the compiler changes source code

Some source code instrumentation may prevent the compiler from applying transformation
= j.e.: loop interchange

We want to evaluate the “real” executed code

We are able to reconstruct an abstract vue with functions and loops in order to be able to correlate
with your source code.

One little difference is understanding loops at assembly level

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 5

Introduction
MAQAO: working at binary level (2/2)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Source level V.S. Assembly level

Peel/Prolog

You just need to understand the difference
But our tools’ reports always point to source code

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

ASM
Loop 2

!

_
_

S cCcrrTOOCc (N

Versioning

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: locating hotspots

Time categorization - mz-mpich-3.1.sp-mz.C.8 v Hotspots - Functions
X
[] Application i
[] MPI
OpenMpP 6
|| Math
[| System 415 -
M %Time
| | Pthread
|| 10 2
M String manipulation
Memaory operations o -
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[| Others
" Texaci_solution__- APexacl_soluionT 021 0.03

x_unpack_solve_info__ - 114@x_solve | 0.14 003

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: locating hotspots
Introduction

Locating most time consuming hotspots is the first step you want to accomplish.

Multiple measurement methods available:
= Why is it important to know this ?

= Instrumentation
= Through binary rewriting
» High overhead / More precision
= Sampling
= Hardware counters (through perf_event_open system call)

» Linux kernel timers
= No instrumentation / Very low overhead / less details (i.e. function calls count)

» Default method: Sampling using hardware counters (if available) or timers
Runtime-agnostic: Only system processes and threads are considered

Where is time spent ? Which one(s) should I investigate first ?

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 8

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: locating hotspots
Time categorization

Sadly, executing an application is not just doing the science you are supposed to !

e e e
Work sharing/splitting Time categorization - mz-mpich-3.1.sp-mz.C.8
» Shared: Pthreads, OpenMP, etc ...

= Distributed: MPI, etc...

[Application

MP1
i OpenMP
Programming
| Math
= IO
= String manipulation O] System
= Memory management] Pthread
= Math (external librarires)] 10
M String manipulation

Memory operations

[| Others

Doing actual science (Application)
» Functions
= Loops

MAQAO LProf: locating hotspots

Function and loop hotspots (1/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Lets focus on science !

First we want to check function hotspots load balancing vue at (multi)node level

= For the same function

= Does it behave the same way on all the nodes ?

com pute_rhs_
y_solve_
z_solve_

%_solve_

RADIMNE HI] Demmvaceo

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Mam e

Hotspots - Functions

Median Excl %Time
30.88
15.51
15.34
15.07

C &1

Deviation
0.14
0.14
0.14
0.14

m 14

10

VIRTYUALAINSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: locating hotspots
Function and loop hotspots (2/3)

AN = mp1

M %Time

solvel 15.51 0.14

z_solve_ 15.34 0.14

MAQAO LProf: locating hotspots
Function and loop hotspots (3/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Then analyse time spent in loops:
= Time spent in loop w.r.t. function

binverhs - 206@so0lve_subs f
MPIDI_CH3I_Progress
poll_active_fboxes

v_solve_omp_fn.0 - 45&y_solve f

loops
Loop 121 - v_solve f@45
Loop 122 - y_solve f@45
Loop 124 - yv_solve f@45

_solve f&145
u USG MAQAO CQA tOOI tO Loop 126 -Jy_solve f@55
analyse loops of interest Loop 123 - y_solve.f@45

¥»_solve_omp_fn.0 - 43&@x_solve f

loops

dauvergne - Process #14213 - Thread #14201

Nam e

Excl %Time
17.27
15.24
13.71
2.47
2.47

0
016
0.14
2.03
1.02

8.23
8.23

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Excl Time (s)
2.23
1.96
1.77

1.09

1.06

12

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization

MPI Time Pie Chart

@ P waiall @ MEL it ® mEn_Barior MPL_lsend @ MPI_Reduce © MPLirecy @ MPI_Comem_spiit) MPI_Bcast @ MPL_finalize
P1_Gomm_rank

MPI Profile Density Summary Per Function Density Topology Graph Topology Matrix) WP Wime @ MPI_Garmm_sicu MP1_G

MPI Profile

MPI Hits Pie Chart

@MPI_Waitall & MPI_init L L
MPI_Wtime @ MPI_Comm_sizefl MPI_Comm_rank MPI1 Size Pie Chart

@MP_isana) MPLRaduss @ MPLiecy () MPLReast

&

MPI Function Scattering over Time Communication Topology

MPI_irecy || Total Time v || Reset View

O stacked O stream @ Expanded ® MPI_Barrier MPI_Bcast @ MPI_Comm_split Lirecy @ MPI_lisen

@ @ o o 2
&8 8 8§ 8
R R R & R

3 3
® R

@
&
®

g
®

MPL d © MPI_Reduce
| Rank 89
l Delete Node
| | | Node Statistics
| | Neighbour
|
I I out Total
| 4 4 4
| Size
111 in Out Total
207.035 207.935 415.869
|
|
\ i

l HW‘ Wl)

1

4 4 N N @ ow A A oa O
e 9 5 a 8 8 8 & & 4658 &
X _® ® ¥ & ® R & R ® X &

111111

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Introduction (1/2)

The previous profiler module only provided a global figure about time spent in the MPI runtime (X%)
We want the same kind of insight but dealing with MPI primitives

Our methodology:
= Coarse grain: overview, global trends/patterns => cheapest possible cost/overhead
= Fine grain: filtering precise issues => accept to pay higher cost/overhead if worth

Online profiling:

= No traces to void IO wall: no IOs (only one result file with pre-processed data)
= Avoid memory : reduced memory footprint thanks to aggregated metrics

= Scalable on 1000+ MPI processes

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 14

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Introduction (2/2)

Summary: LProf/MPI is a simple MPI profiling tool targeting lightweight metrics which can be reduced
online (no trace required).

In-browser Visualizer

MPI Function Scattering ove

Does not require recompiling

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Global profile (1/3)

Summary vue: MPI primitives classified by hits (calls), time and size (if applicable)

MPI Hits Pie Chart

@ MPI_Waitall MPI_Init ® MPI_Barrier MPI_isend @ MPI_Reduce © MPI_lrecv @ MPI_Comm_split &% MPI_Bcast @ MPI_Finalize
MPI_Wiime @ MPI_Comm_size® MPI_Comm_rank

33%

33%

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 16

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Global profile (2/3)

MPI Time Pie Chart

® MPI_Waitall MPI_Init @ MPI_Barrier MPI_Isend @ MPI_Reduce | MPI_lrecvy @ MPI_Comm_split © MPI_Bcast @ MPI_Finalize
MPI_Wtime @ MPI_Comm_size MPI_Comm_rank
12% ‘

MPI Size Pie Chart

@ MPI_Isend MPI_Reduce £ MPI_Irecy MPI_Bcast

MAQAO LProf/MPI: MPI characterization
Global profile: flat vue (3/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MPI Profile

Function

MPI Waitall

MPI Init

MPI Barrier
MPI Isend

MPI Reduce
MPI Irecv
MPI Comm split
MPI Bcast

MPI Finalize
MPI Wtime
MPI Comm size
MPI Comm rank

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Hits
192960
128
256
192960
384
192960
128
1152
128
256
128
256

Time
13m1.51s
1 m46.60 s
10.88 s
1.47 s
5.36e-1 s
4.62e-1 s
4.05e-1s
3.12e-2 s
2.07e-3s
3.53e-4d s
1.30e4 s
4.28e-5s

Size

0B

0B

0B

4.568 GB
11.000 KB
4.568 GB
0B
132.000 KB
0B

0B

0B

0B

Walltime %
52.333%
7.138%
0.729%
0.098%
0.036%
0.031%
0.027%
0.002%
0.000%
0.000%
0.000%
0.000%

18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Function scattering over time

MPI Function Scattering over Time

QO stacked Q Stream @ Expanded @ MPI_Barrier MPI_Bcast @ MPI_Comm_split MPI_lrecv @ MPI_lsend MPI_Reduce
@ MPI_Waitall @ MPI_Witime

100%

{
IR

) 1]
30% Fid ¢

|

14.5981

25%

20%

15%

10%

5%

0%

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Probability densities: when and how long ?

Probability Densities

MPI_Reduce ~ || Over Time b
max : 7.59494

min : 0
@ MPI_Reduce Call distribution owver time

7.00
6.50
6.00
5.50
5.00
4. .50
4.00
3.50
3.00
2.50
2.00
1.50
1.00

0.50

0.00
2114010 4. 242300 6.370590 8.498880 10627200 12755500

Time in Seconds

min : 0, max: 14.6124

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 20

MAQAO LProf/MPI: MPI characterization

2D communication matrix

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

MPI_lrecw Total Size Reset View

Communication Matrix

Hit, time, size

o
..: ..-I
o R L B
S T
-I I F I...I L
' - "
- . = 1.
- --I..:- I - - - 1 - l
.I.-I. - L .I. - L :.
I. - - .1.-: :: - - L
et ot R
Er L I
- -.’1- .- .-.I - - -
- o =
et .'-.": -
R - e <
il ™~ o i
e g e
I- - .- r -..‘l - -
- L ‘ I- ’ - - ‘.
= iy = e e
PR T S
“a '.-'L-||: - .E:'-_.- -_-:;: -
- L u - .- L ..
. B L S
- - '.L.-l_l::..-'_.-.
s - I |] h ...-

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

65 -> 54 :5.183 MB

21

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Per rank distribution

Per Rank distribution
Hlt, tlme, Slze O Grouped @ Stacked @ inbound i@ Outbound

100.247 MB

104,904 MB
. 100.136 MB
Check load balancing w5207 va
00.500 MB
B5.B31 MB
B1.062 MB
TE.204 MB
T1.526 MB
66757 MB
61.980 MB
57.220 MB
52.452 MB
47684 MB
42915 MB
38147 MB
33.3TaMB
28.610 MB
23.842 MB
19.073 MB
14.305 MB
9.537 MB
4.768 MB

14 20 Ea =] T4 Ba 104 119

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
3D Topology

Communication Topology

MPI_Irecv v || Total Time v || Reset View

Delete Node

Rank 89 |

Node Statistics

Neighbour

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops

quality analysis

~ Source loop ending at line 682

~ MAQADO binary loop id: 238

The loop is defined in MPI/BT/x_solve.f:519-682
15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

| Gain | Potential gain | Hints | Experts only

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup).
Since your execution units are vector units, only a fully vectorized loop can use their full power
Proposed solution(s):
Two propositions:

Try another compiler or update/tune your curent one:
- Remove inter-iterations dependences from your loop and make it unit-stride.

By removing all these bottlenecks, you can lower the cost of an iteration from 190.00 to 143.00 cycles (1.33x speedup)

Source loop ending at line 734

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 24

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Introduction

Main performance issues:
= Work sharing / communications / multicore interactions
= Core level

Most of the time core level is forgotten ! But that’s were science is computed

CQA works at (assembly) loop level:

= In HPC most of the time is spent in loops (V.S. functions)

= Assess the quality of code generated by the compiler

= Take into account processor’s (micro)architecture via simulation
= Hints and workarounds to improve static performance

Compute bound :
= this tool is not meant for optimizing memory issues
= [t assumes that you have fixed them

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

25

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Goal: how will it help you ?

Produce reports:
= We deal with low level details (assembly, microarchitecture details)

= You get high level reports Source loop ending at line 10
Provide high level reports: ~ MAQAO binary loop id: 2 N
- Provide source |00p ConteXt When The loop is defined in Izhomelacademic/HLRS/xhp/xhpeo/TEST/matmul/kernel.c:9-10

2% of peak computational performance is used (0.67 out of 32.00 FLOP per cycle (1.67 GFLOPS @ 2.50GHz))

available (-g or equivalent)
= Describing a pathology/bottleneck

Gain | Potential gain | Hints | Experts only

u S u g g est| n g WO rka rO u n d S tO | m prove Your loop Is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
. By fully vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.38 cycles (8.00x speedup)
Statl C pe I"fO I"m a n Ce Since your execution units are vector units, only a fully vectorized loop can use their full power.

Proposed solution(s):

» Reports categorized by confidence level: 1, oostons
= gain, potential gain, hint and eXpert - Try another compiler or update/tune your current one

- Remove inter-iterations dependences from your loop and make it unit-stride
* It your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingt

C storage order is row-major: for(i) for(j) a[jj[i] = b{j][i]: (slow, non stride 1) => for(i) for()) afi][j] = bi]{j]: (fast, stride 1)
. . * If your loop streams arrays of structures (A0S), try to use structures of arrays instead (SoA)
No runtime cost/overhead: for() allx = bl . (slow, non strde 1) => for() ax{] = bl (ast, stride 1

= Your don’t need to execute your app
= Static analysis

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 26

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Processor Architecture: Core level

Maybe you want an efficient code that gets the best out of available computing resources ?

Concepts:

= Peak performance, TOP500/LINPACK
= Execution pipeline

= Ressources/Functional units

Most of the time applications only exploit at best 5% to 10% of the peak performance

Same instruction - Same cost
Key performance levers: .

= Vectorization Process up to
= Get rid of high latency instructions if possible 8X (SP) data

= Make the compiler generated an efficient code ...-....

P —

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 27

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
The compiler

Compiler remains our best friend

Be sure to select proper flags
= Know default flags (e.g., -xHost on AVX capable machines)
» Bypass conservative behavior when possible (e.g., 1/X precision)

Pragmas:
= Vectorization, Alignement, Unrolling, etc...
= Portable transformations

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

28

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
GUI sample (1/2)

MA@AO

Code quality analysis

~ Source loop ending at line 682
~ MAQAO binary loop id: 238

The loop is defined in MPI/IBT/x_solve.f:519-682

15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

P g : .
| Gain ll Potential gain | Hints | Experts only

L

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup)

Since your execution units are vector units, only a fully vectorized loop can use their full power
Proposed solution(s):
Two propositions

- Try another compiler or update/tune your current one
- Remove inter-iterations dependences from your loop and make it unit-stride

By removing all these bottlenecks, you can lower the cost of an iteration from 190.00 to 143.00 cycles (1.33x speedup)

Source loop ending at line 734

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 29

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
GUI sample (2/2)

Code quality analysis

~ Source loop ending at line 682
~ MAQAO binary loop id: 238

The loop is defined in MPI/BT/x_solve.f:519-682
15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

l‘ Gain | Potential gain | Hints | Experts only

234 SSE or AVX instructions are processing arithmetic or math operations on double precision FP elements in scalar mode (one at a time)

Your loop is probably not vectorized (store and arithmetical SSE/AVX instructions are used in scalar mode and, for others, at least one is in
vector mode)
Only 28% of vector length is used

The binary loop is composed of 234 FP arithmetical operations

- 95 addition or subtraction

- 139: multiply

The binary loop is loading 1600 bytes (200 double precision FP elements)
The binary loop is storing 616 bytes (77 double precision FP elements)

Arithmetic intensity is 0.11 FP operations per loaded or stored byte

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 30

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention

Questions

UNIVERSITE DE
i Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

