

13th VI-HPS Tuning Workshop Barcelona Supercomputing Center 10-14 February 2014

• Presenters

- Wolfgang Frings, Marc Schlütter (JSC)
- Robert Dietrich, Tobias Hilbrich (TUD)
- Tim Cramer, Joachim Protze, Felix Münchhalfen (RWTH)
- Michael Firbach, Isaías Comprés (TUM)
- Andres Charif-Rubial, Jean-Baptiste Besnard (UVSQ)
- Judit Giménez, Juan González, Germán Llort, Harald Servat (BSC)

Outline

- Monday, 10th February
 - 13:30 Registration
 - 14:00 Welcome
 - Introduction to VI-HPS & overview of tools
 - Introduction to parallel performance engineering
 - Introduction to parallel performance modeling
 - Parallel file I/O bottlenecks and solutions
 - 15:00 (break)
 - 15:30 Lab setup
 - MareNostrum-III hardware and software environment
 - Building and running NPB-MZ-MPI/BT-MZ & CGPOP
 - 17:30 (adjourn)

- Tuesday, 11th February
 09:00 13:00 Paraver & Dimemas
- Wednesday, 12th February
 - 09:00 10:45 **Score-P & CUBE**
 - 11:15 13:00 Score-P & Scalasca
- Thursday, 13th February
 - 09:00 10:45 Advanced Score-P & Vampir
 - 11:15 13:00 **Periscope**
- Friday, 14th February
 - 09:00 13:00 **MUST**, **MAQAO**

- Hands-on exercises part of each tool presentation every morning session.
- Hands-on coaching to apply tools to analyse & tune your own codes each afternoon to 17:30

- Ensure your application codes build and run to completion with appropriate datasets
 - Initial configuration should ideally run in less than 15 minutes with 1-4 compute nodes
 - to facilitate rapid turnaround and quick experimentation
 - Larger/longer scalability are also interesting
 - turnaround may be limited due to busyness of batch queues
 - Compare your application performance on other systems
 - VI-HPS tools already installed on a number of HPC systems
 - If not, ask your sysadmin to install them (or install a personal copy yourself)

Tools will *not* automatically make you, your applications or computer systems more productive. However, they can help you understand how your parallel code executes and when/where it's necessary to work on correctness and performance issues.

DON'T PANIC!

The workshop presenters are here to assist you.

13th VI-HPS Tuning Workshop (10-14 February 2014) BSC

VI-HPS

- nct00001
 - Teacher's account
- nct010[01-30]
 - Student's account

VI-HPS

System	MareNostrum-III	
Domain	bsc.es	
Login nodes	mn[1-3].bsc.es	
Vendor	IBM	
Network	Infiniband FDR10 fat-tree	
Processors	SandyBridge-EP E5-2670	
Frequency	2.60GHz (turbo up to 3.30GHz)	
Compute nodes	2100 (25 racks * 84 compute nodes)	
Chips per node	2	
Cores per chip	8	
Threads per core	1	
Memory per node 32 GBytes (4GB OS / 28 GB user) 13th VI-HPS Tuning Workshop (10-14 February 2014) BSC		

System	MareNostrum-III		
Domain	bsc.es		
Filesystem	GPFS		
Parallel filesystem	/gpfs/scratch/nct00)/\${USER}	
Compilers	Intel compiler-suite	e v13.0.1 GNU c	ompiler-suite 4.7.2
OpenMP flag	-openmp	-fopen	mp
MPI	OpenMPI 1.5.4	Intel MPI 4.1.1	MVAPICH 1.8.1
C compiler	mpicc	mpicc	mpicc
C++ compiler	mpiCC	mpicxx	mpicxx
F77 compiler	mpif77	mpif77	mpif77
F90 compiler	mpif90	mpif90	mpif90

- To switch between compilers
 - module load intel (default, v13.0.1)
 - module load gcc (base 4.3.4, module version 4.7.2)
- To switch between MPI implementations
 - module load openmpi (default, v1.5.4)
 - module load impi (v4.1.1)
 - module load mvapich2 (v1.8.1)
- To set gnu compilers as backend compilers for MPI
 - module load gnu
- To use the performance tools
 - module load bsctools
 - module load unite

13th VI-HPS Tuning Workshop (10-14 February 2014) BSC

- Job submit bsub < my_job.lsf
- List jobs
 bjobs [-w][-X][-I job_id]
- Job cancel bkill <job_id>

#!/bin/bash

- #BSUB −x
- $\#BSUB oo output \%J.out \rightarrow JOB standard output$
- #BSUB -eo output $\%J.err \rightarrow JOB$ standard error
- #BSUB -J cgpop → Job name

- #BSUB -n 48 → # of MPI processes
- $\#BSUB R"span[ptile=16]" \rightarrow Span, 16 MPI processes per node$
 - \rightarrow Exclusive use of the nodes assigned
- #BSUB -W 02:00 \rightarrow Wall clock time (HH:MM)

```
mpirun --bind-to-core ./cqpop
```

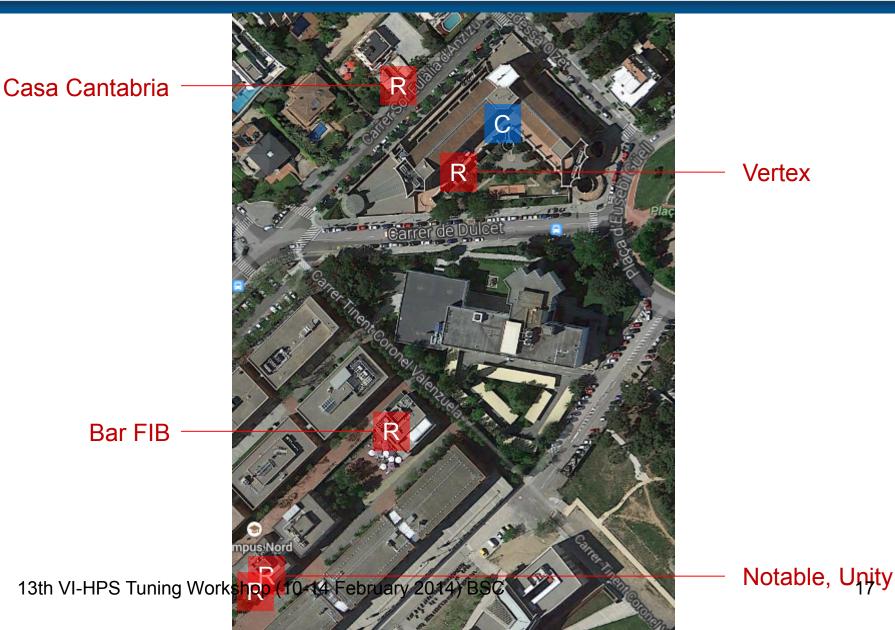
#!/bin/bash

#BSUB -n 64	ightarrow # of MPI processes
#BSUB -R"span[ptile=2]"	ightarrow Span, 2 MPI processes per node
#BSUB -x	ightarrow Exclusive use of the nodes assigned
#BSUB -oo output_%J.out	ightarrow JOB standard output
#BSUB -eo output_%J.err	ightarrow JOB standard error
#BSUB -J hybrid	\rightarrow Job name
#BSUB -W 02:00	\rightarrow Wall clock time (HH:MM)

```
# 4 MPI processes per node / 16 cpus available (4 threads per MPI process):
export OMP_NUM_THREADS=8
mpirun --bind-to-core --npersocket 1 --cpus-per-proc 8 ./bt-mz.B.64
```

VI-HPS

- Full nodes --bind-to-core
- Not-full nodes
 - --bind-to-core --npersocket X


(where X balances the processes among the two sockets)

• Hybrid (either full or not)

--bind-to-core --npersocket X --cpus-per-proc 8 (where X balances the processes among the two sockets)

Additional logistics (for your stomach)

