
Introduction to Simple Performance

Modeling

Tim Cramer

RWTH Aachen University

cramer@rz.rwth-aachen.de

February 10th 2014

Case Study: CG Solver

 Sparse Linear Algebra

 Sparse Linear Equation Systems occur in

many scientific disciplines

 Sparse matrix-vector multiplications (SpMxV)

are the dominant part in many iterative

solvers (like the CG) for such systems

 #non-zero elements << n*n

Beijing Botanical Garden

Top right: Orginal building

Bottom right: Model

Bottom left: Matrix

(Source: Beijing Botanical Garden and University of

Florida, Sparse Matrix Collection)

n: matrix dimension

nnz: #non-zeros

Case Study: CG Solver

 Compressed Row Storage (CRS) format

 only non-zero values are stored (nnz)

 Given 𝑨𝝐 ℝ𝟒𝒙𝟒

 𝑨 =

𝟏, 𝟏 𝟎 𝟎 𝟎
𝟐, 𝟏 𝟐, 𝟐 𝟎 𝟎
𝟎 𝟑, 𝟐 𝟑, 𝟑 𝟎

𝟒, 𝟏 𝟎 𝟒, 𝟑 𝟒, 𝟒

 CG iterative solver

 matvec: 𝑦 = 𝐴 ∙ 𝑥 (SpMV)

 xpay: 𝑦 = 𝑥 + 𝛼 ∙ 𝑦

 axpy: 𝑦 = 𝛼 ∙ 𝑥 + 𝑦

 vectorDot: 𝑐 = 𝑎 ∙ 𝑏

 Where to start parallelizing? Where is a performance problem?

 Hotspot analyses & more

Hotspot

 Determine the Hotspot

 Use profiling tools

(e.g., VI-HPS tools)

 Manual measurements of code

fragments

 Runtime Shares of the Linear Algebra Kernels

 Used System: Two Intel SandyBridge SNB processors @ 2.6 GHz

 SpMV is the most dominant operation

 Delivers the hotspot a reasonable performance?

Considering only the time of 108.5 s (= 0.967 * 112.12s) is not meaningful

Better metric: GFLOPS, here 5.22 GFLOPS for SpMV

(= 2 * I * nnz * 10^-9 / 108.5 s)

System #Threads Serial

Time [s]

Parallel

Time [s]

daxpy /

dxpay

dot

product

SpMV

2 x SNB 16 340.62 112.12 2.3 % 1.0 % 96.7 %

 Testcase

 Fluorem/HV15R

 N=2,017,169, nnz=283,073,458

 3.2 GB Memory footprint

 I = 1000 Iterations

Roofline Model

 Peak performance of two Intel SandyBridge SNB processors (2.6

GHz) is 333 GFLOPS (2.6 GHz * 8 OPs/cycle * 16 cores)

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

Roofline Model

 Memory bandwidth measured with the STREAM benchmark is about

75 GB/s (Triade: 𝒂 = 𝒃 + 𝜶 ∗ 𝒄)

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

Roofline Model

 The “Roofline” is the peak perfomance depending on the

algorithms’s “operational intensity”.

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

Peak FP Performance

Roofline Model

 To reach the peak performance an even mix of multiply and add

operations is need (“fused multiply add”)

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

Peak FP Performance

MULT / ADD mix balance

b1

a1 a2

b2 b0

SIMD / AVX Arithmetic

 Basic Arithmetic on Intel SNB

 Fused Multiply Add on Intel SNB

source 1

source 2

destination

a3 a2 a1 a0

256 bit

4 x DP

+
b3 b2 b1 b0 4 x DP

a3+b3 a2+b2 a1+b1 a0+b0 4 x DP
=

a3 a0 source 1 4 x DP

b3 source 2 4 x DP

a3*b3+c3 a2*b2+c2 a1*b1+c1 a0*b0+c0 destination 4 x DP
=

+
c3 c2 c1 c0 source 3 4 x DP

*

4 results

per cycle

8 results

per cycle

Roofline Model

 Without AVX / SIMD vectorization only 1/8 of the peak performance

is achievable

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

AVX / SIMD

Peak FP Performance

MULT / ADD mix balance

ccNUMA

 Non Uniform Memory Access

 Most machines are multiple socket

machines

 Latency and memory bandwidth

depend on which core accesses

the memory

 Linux uses a first touch policy for the

memory placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

Roofline Model

 Memory controller can only be saturated if the memory placement is

correct (ccNUMA, first touch)

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

AVX / SIMD

Peak FP Performance

MULT / ADD mix balance

Implementation of the Hotspot (SpMV)

 Sparse Matrix Vector Multiplication (SpMV)

pragma omp parallel private(i,j,is,ie,j0,y0, thread, bs, be)

thread = omp_get_thread_num();

bs = A->blockptr[thread];

be = A->blockptr[thread + 1];

for (i = bs; i < be; i++) {

 y0 = 0;

 is = A->ptr[i];

 ie = A->ptr[i + 1];

 for (j = is; j < ie; j++) {

 j0 = index[j];

 y0 += value[j] * x[j0];

 }

 y[i] = y0

}

length nnz,

too big for

cache

length n, fits

into cache

length n, fits

into cache

2 Floating

Point Ops

length nnz,

too big for

cache

Roofline Model: SpMV

 Roofline Model

 Using memory bandwidth 𝐵𝑊 and theoretical peak performance 𝑃

 Model for SMXV 𝑦 = 𝐴 ∗ 𝑥

 Assumptions

𝑥 , 𝑦 can be kept in the cache (~ 15 MB)

A too big for caches (~ 3200 MB)

𝑛 ≪ 𝑛𝑛𝑧

Compressed Row Storage (CRS) Format: One value (double) and one

index (int) element have to be loaded (dimension nnz) → 12 Bytes

 Operational intensity 𝐎 =
2 𝐹𝐿𝑂𝑃𝑆

12 𝐵𝑦𝑡𝑒
=

1

6

𝐹𝐿𝑂𝑃𝑆

𝐵𝑦𝑡𝑒
 (→ memory-bound)

 Performance Limit: 𝐿 = min{𝑃, 𝑂 ∗ 𝐵𝑊}

Roofline Model for SNB

 Roofline Model 2 x SNB (2.6 GHz, STREAM 74.2 GB/s, Peak 332.8

GFLOPS)

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
F

L
O

P
S

Operational Intensity

O = 1/6

L = 12.4 GFLOPS

0.25

1

4

16

64

256

1024

4096

 1/16 1/4 1 4 16 64 256

G
FL

O
P

S

Operational Intensity

Reached Performance

 Roofline Model 2 x SNB (2.6 GHz, STREAM 74.2 GB/s, Peak 332.8

GFLOPS)

O = 1/6

L = 12.4 GFLOPS

We only

reached 5.22

GFLOPS for

or SpMV:

Room for

improvement!

First Touch Memory Placement

 First Touch w/ parallel OpenMP code

 All array elements are allocated in the memory of the NUMA node containing

the core executing the thread initializing

the respective partition Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

value[0] …

value[nnz/2]

value[nnz/2] …

value[nnz]

double* value;

value = (double*)

 malloc(nnz * sizeof(double));

omp_set_num_threads(16);

#pragma omp parallel for

for (int i = 0; i < nnz; i++) {

 value[i] = 0.0;

}

0

5

10

15

1 2 4 8 16

G
FL

O
P

S

Threads

SNB Limit SNB

SpMV Results

 After fixing the performance issue we reach 13.1 GFLOPS

 Prediction was L = 12.4 GFLOPS

 Model not perfect, but you can get an idea of the order of magnitude

Performance

even better than

predicted

The End

Thank you for your attention.

Tim Cramer cramer@rz.rwth-aachen.de, RWTH Aachen University

mailto:cramer@rz.rwth-aachen.de
mailto:cramer@rz.rwth-aachen.de
mailto:cramer@rz.rwth-aachen.de

