
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

Jean-Baptiste BESNARD

{andres.charif,jean-baptiste.besnard}@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Performance evaluation team
Main activities

 Develop performance analysis and optimisation

tools: MAQAO Framework and Toolsuite

 Establish partnerships

 Optimize industrial applications

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Source release by end February

 Special version version for this workshop:

 Including the MALP tool (see LICENSE file)

 Special license

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Introduction
Methodology – Performance analysis and Optimization

 A lot of tools ! Which one to use ? When

 Our approach/experience: decision tree

 Currently working on HPC

 Multi-node > Node > Socket > Core

 Classify IO/Memory/MPI/OpenMP/Application

 PAMDA methodology

 to be published: 7th Parallel Tools Workshop

 https://tools.zih.tu-dresden.de/2013/

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Parallelism level

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot 1/4

VI-HPS

Pinpointing hotspots
GUI snapshot 2/4

VI-HPS

Pinpointing hotspots
GUI snapshot 3/4

VI-HPS

Pinpointing hotspots
GUI snapshot 4/4

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

VI-HPS

Code quality analysis
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Code quality analysis
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Code quality analysis
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Code quality analysis
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Code quality analysis
Output example 1/2

VI-HPS

Code quality analysis
Output example 2/2

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

MPI Characterization at scale

Introduction

 Our methodology

 Corse grain: overview, global trends/patterns

 Fine grain: filtering precise issues

 Tracing issues

 Scalability

 Memory size: can we reduce it ?

 Trace size: can we reduce it ?

 IO’s wall: remove it ?

MPI Characterization at scale

Introduction

Multi-Application Online Profiling (MALP)

is an online MPI oriented profiling tool.

Part of the MAQAO tool-set as a binary module.

Online analysis

- No Ios

- Smaller memory footprint

- Pipelined analysis

- Better scalability

Instrumentation

- Full MPI interface

- Most 'POSIX' functions

Reporting

- Web-based frontend

MPI Characterization at scale

Runtime coupling

Runtime coupling through MPI « virtualization »
- Gathers instrumentation and analysis in the same MPI instance.

- Takes advantage of high speed networks.

- Avoids the storage of large traces while preserving event ganularity

Better scalability (no IO contention) tested up to 16k cores

Suitable for very long runs (data are consumed on the fly)

Lowers the time to report

IO delegation (when tracing)

MPI Characterization at scale

Measurements

Topological analysis

3D topology viewer

800 cores on a plane engine simulation

MPI Characterization at scale

Measurements

Topological analysis

3D topology viewer

CGPOP 230 cores.

MPI Characterization at scale

Measurements

Spatial analysis

Spatial scattering

700 cores on a Magneto Hydro-Dynamic (MHD) application

MPI Characterization at scale

Measurements

Spatial analysis

Available for every instrumented calls

MPI Characterization at scale

Measurements

Balancing analysis

Function costs over processes (800 cores engine simulation)

MPI Characterization at scale

Measurements

Profiles

Time breakdown (categories)

- MPI

- Posix

- Others (Wall-time - (MPI+POSIX))

Describes immediatelly what

takes time in the application.

MPI bound ?

System bound ?

Other ?

MHD app (256 cores)

MPI Characterization at scale

Measurements

Profiles

Global view (functions)

MHD app (256 cores)

Function names can be queried by

hovering with the mouse.

MPI Characterization at scale

Measurements

Profiles

Detailed view

Functions are sorted in

decreasing time order.

« Other calls » appears in red.

It includes the actual computation.

Profiles and pie charts can also

be generated for MPI or POSIX

calls only.

MHD app (256 cores)

MPI Characterization at scale

Measurements

Temporal analysis

Projects metrics over processes and time.

CGPOP (230 cores) overscaled on a 48 core problem

VI-HPS

Ongoing work

 Dynamic bottleneck analyzer

 Differential analysis

 Memory characterization tool

 Access patterns

 Data reshaping

 Memory allocations tracing

 Cache simulator

 Value profiler

 Function specialization / memorizing

 Loops instances (iteration count) variations

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

