
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

Jean-Baptiste BESNARD

{andres.charif,jean-baptiste.besnard}@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Performance evaluation team
Main activities

 Develop performance analysis and optimisation

tools: MAQAO Framework and Toolsuite

 Establish partnerships

 Optimize industrial applications

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Source release by end February

 Special version version for this workshop:

 Including the MALP tool (see LICENSE file)

 Special license

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Introduction
Methodology – Performance analysis and Optimization

 A lot of tools ! Which one to use ? When

 Our approach/experience: decision tree

 Currently working on HPC

 Multi-node > Node > Socket > Core

 Classify IO/Memory/MPI/OpenMP/Application

 PAMDA methodology

 to be published: 7th Parallel Tools Workshop

 https://tools.zih.tu-dresden.de/2013/

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Parallelism level

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot 1/4

VI-HPS

Pinpointing hotspots
GUI snapshot 2/4

VI-HPS

Pinpointing hotspots
GUI snapshot 3/4

VI-HPS

Pinpointing hotspots
GUI snapshot 4/4

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

VI-HPS

Code quality analysis
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Code quality analysis
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Code quality analysis
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Code quality analysis
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Code quality analysis
Output example 1/2

VI-HPS

Code quality analysis
Output example 2/2

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 MPI Chaterization

MPI Characterization at scale

Introduction

 Our methodology

 Corse grain: overview, global trends/patterns

 Fine grain: filtering precise issues

 Tracing issues

 Scalability

 Memory size: can we reduce it ?

 Trace size: can we reduce it ?

 IO’s wall: remove it ?

MPI Characterization at scale

Introduction

Multi-Application Online Profiling (MALP)

is an online MPI oriented profiling tool.

Part of the MAQAO tool-set as a binary module.

Online analysis

- No Ios

- Smaller memory footprint

- Pipelined analysis

- Better scalability

Instrumentation

- Full MPI interface

- Most 'POSIX' functions

Reporting

- Web-based frontend

MPI Characterization at scale

Runtime coupling

Runtime coupling through MPI « virtualization »
- Gathers instrumentation and analysis in the same MPI instance.

- Takes advantage of high speed networks.

- Avoids the storage of large traces while preserving event ganularity

Better scalability (no IO contention) tested up to 16k cores

Suitable for very long runs (data are consumed on the fly)

Lowers the time to report

IO delegation (when tracing)

MPI Characterization at scale

Measurements

Topological analysis

3D topology viewer

800 cores on a plane engine simulation

MPI Characterization at scale

Measurements

Topological analysis

3D topology viewer

CGPOP 230 cores.

MPI Characterization at scale

Measurements

Spatial analysis

Spatial scattering

700 cores on a Magneto Hydro-Dynamic (MHD) application

MPI Characterization at scale

Measurements

Spatial analysis

Available for every instrumented calls

MPI Characterization at scale

Measurements

Balancing analysis

Function costs over processes (800 cores engine simulation)

MPI Characterization at scale

Measurements

Profiles

Time breakdown (categories)

- MPI

- Posix

- Others (Wall-time - (MPI+POSIX))

Describes immediatelly what

takes time in the application.

MPI bound ?

System bound ?

Other ?

MHD app (256 cores)

MPI Characterization at scale

Measurements

Profiles

Global view (functions)

MHD app (256 cores)

Function names can be queried by

hovering with the mouse.

MPI Characterization at scale

Measurements

Profiles

Detailed view

Functions are sorted in

decreasing time order.

« Other calls » appears in red.

It includes the actual computation.

Profiles and pie charts can also

be generated for MPI or POSIX

calls only.

MHD app (256 cores)

MPI Characterization at scale

Measurements

Temporal analysis

Projects metrics over processes and time.

CGPOP (230 cores) overscaled on a 48 core problem

VI-HPS

Ongoing work

 Dynamic bottleneck analyzer

 Differential analysis

 Memory characterization tool

 Access patterns

 Data reshaping

 Memory allocations tracing

 Cache simulator

 Value profiler

 Function specialization / memorizing

 Loops instances (iteration count) variations

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

