
Andrés S. CHARIF-RUBIAL

Emmanuel OSERET

{achar,emmanuel.oseret}@exascale-computing.eu

Exascale Computing Research

VI-HPS Workshop

Performance Analysis and Optimization

MAQAO Tool

1MAQAO Tool

Outline

� Introduction

� MAQAO Tool and Framework

� Static Analysis

� Building performance evaluation tools

� Conclusion

Andrés S CHARIF-RUBIAL 2MAQAO Tool

Methodology

� Type of code ? CPU or memory bound

� Static + Dynamic approach

� Approach : Top-Down / Iterative

� Detect hot spots

� Focus on specific parts

Andrés S CHARIF-RUBIAL 3MAQAO Tool

Methodology

� Exploit compiler to the maximum

� IPO and inlining !!!

� Flags

� Optimization levels

� Pragmas : unroll,vectorize

� Intrinsics

� Structured code (compiler sensitive)

Andrés S CHARIF-RUBIAL 4MAQAO Tool

MAQAO Tool and Framework

� MAQAO Framework

� Modular approach

� Reusable components

� MAQAO Tool

� Using Framework

� Scripting Language

� Batch interface

Andrés S CHARIF-RUBIAL 5MAQAO Tool

MAQAO Framework

� Binary manipulation

� Set of C libraries (core features)

� Scripting language on top

� Plugins

Andrés S CHARIF-RUBIAL 6MAQAO Tool

MAQAO Framework

STAN MTL

API bindings to Abstract And Binary layers

MIL DDG

Abstraction layer

libcore libcommon libasm

libaffine

MADRAS

Re-assemble Patch/Rewrite

Disassemble

libmt

libmadras
Disassembler

Generator

…DECAN

MAQAO Lua Plugins

Andrés S CHARIF-RUBIAL 7MAQAO Tool

MAQAO Profiler

MAQAO Framework

� Scripting language

� Lua language : simplicity and productivity

� Fast prototyping

� MAQAO Lua API : Access to

� an abstraction layer

� a binary rewriting layer

� already existing modules

� Customized static analysis

� Customized dynamic analysis

Andrés S CHARIF-RUBIAL 8MAQAO Tool

MAQAO Tool

� Built on top of the Framework

� Exploit existing framework features

� Produce reports

� Client/Server approach

� User interface

� Batch interface

� Loop-centric approach

� Packaging : ONE (static) standalone binary

Andrés S CHARIF-RUBIAL 9MAQAO Tool

Binary codeCode abstraction

CGCFG

DDG

Loop detection

Dominator tree

Assembly code

Analyses

Source code

Assembly code / (innermost) Loops

Static

Dynamic

Reports

MADRAS

Runtime

End User

Developer

Compiler

External

Developers

=> New modules

Modular Assembler Quality Analyzer and Optimizer

www.maqao.org

MAQAO Tool overview

Andrés S CHARIF-RUBIAL 10MAQAO Tool

Static analysis

� Static performance model : STAN

� Loop-centric

� Predict performance

� Take into account microarchitecture

� Assess code quality

� Degree of vectorization

� Impact on micro architecture

Andrés S CHARIF-RUBIAL 11MAQAO Tool

Static analysis
The STAN module

� Input

� Micro-architecture (machine model)

� Path to a binary file

� Name of a function

� Output

� CSV file

� TXT file

� Analysis of all innermost loops in a given
function

� STAN is also available via a MAQAO function
Emmanuel OSERET 12MAQAO Tool

Static analysis
The STAN module

� Simulates the target micro-architecture

� Instructions description (latency, uops dispatch...)

� Machine model

� For a given binary and micro-architecture, provides

� Quality metrics (how well the binary is fitted to the uarch)

� Static performance (lower bounds on cycles)

� Hints and workarounds to improve static performance

Emmanuel OSERET 13MAQAO Tool

Static analysis
Core 2 and Nehalem Pipeline Model

Emmanuel OSERET 14MAQAO Tool

On Core 2, IQ can be used as a MIN (64 bytes, 18 instructions) loop buffer
On Nehalem, IDQ can be used as a MIN (256 bytes, 28 uops) loop buffer

Static analysis
Sandy Bridge Pipeline Model

Emmanuel OSERET 15MAQAO Tool

1.5 Kuops cache (100% hits for hotspots and 80% hits avg.)
Two 128 bits load units instead of one for Core 2 and Nehalem
AVX instructions set (vector size doubled compared to SSE)

New !

Static analysis
Key analysis/metrics

Emmanuel OSERET 16MAQAO Tool

� Unrolling (unroll factor detection)

� Allows to statically predict performance for different
unroll factors

� Vectorization (ratio and speedup)

� Allows to predict vectorization (if possible) speedup and
increase vectorization ratio if it’s worth

� High latency instructions (division and square root)

� Allows to use less precise but faster instructions like
RCP (1/x) and RSQRT (1/sqrt(x))

Static analysis
TXT high level output example (1/2)

Emmanuel OSERET 17MAQAO Tool

void div (int n, float a[n], float b[n]) {
int i;

for (i=0; i<n; i++)
a[i] /= b[i];

}

MOVSS 0(%RSI,%RAX,4),%XMM0
DIVSS 0(%RDX,%RAX,4),%XMM0
MOVSS %XMM0,0(%RSI,%RAX,4)
ADD $0x1,%RAX
CMP %EAX,%EDI
JG 10

Section 1.1.1: Source loop ending at line 7
===

Composition and unrolling

It is composed of the loop 0
and is not unrolled or unrolled with no
peel/tail code (including vectorization).
Type of elements and instruction set
3 SSE or AVX instructions are processing
single precision FP elements in scalar mode
(one at a time).

Vectorization

Your loop is not vectorized (all SSE/AVX
instructions are used in scalar mode).

Matching between your loop… and the binary loop

The binary loop is composed of 1 FP arithmetical
operations:
1: divide
The binary loop is loading 8 bytes (2 single
precision FP elements).
The binary loop is storing 4 bytes (1 single
precision FP elements).

Arithmetic intensity is 0.08 FP operations per
loaded or stored byte.

Cycles and resources usage

Assuming all data fit into the L1 cache, each
iteration of the binary loop takes 14.00 cycles.
At this rate:

- 0% of peak computational performance is reached
(0.07 out of 16.00 FLOP per cycle (GFLOPS @ 1GHz))

- 1% of peak load performance is reached (0.57
out of 32.00 bytes loaded per cycle (GB/s @ 1GHz))

- 1% of peak store performance is reached (0.29
out of 16.00 bytes stored per cycle (GB/s @ 1GHz))

Static analysis
TXT high level output example (2/2)

Emmanuel OSERET 18MAQAO Tool

Pathological cases

Your loop is processing FP elements but is NOT
OR PARTIALLY VECTORIZED.
Since your execution units are vector units,
only a fully vectorized loop can use their full
power.
By fully vectorizing your loop, you can lower
the cost of an iteration from 14.00 to 3.50
cycles (4.00x speedup).
Two propositions:

- Try another compiler or update/tune your
current one:

* gcc: use O3 or Ofast. If targeting IA32,
add mfpmath=sse combined with march=<cputype>,
msse or msse2.

* icc: use the vec-report option to
understand why your loop was not vectorized. If
"existence of vector dependences", try the
IVDEP directive. If, using IVDEP,
"vectorization possible but seems inefficient",
try the VECTOR ALWAYS directive.

- Remove inter-iterations dependences from
your loop and make it unit-stride.

WARNING: Fix as many pathological cases as you
can before reading the following sections.

Bottlenecks

The divide/square root unit is a bottleneck.
Try to reduce the number of division or square
root instructions.
If you accept to loose numerical precision, you
can speedup your code by passing the following
options to your compiler:
gcc: (ffast-math or Ofast) and mrecip
icc: this should be automatically done by
default

By removing all these bottlenecks, you can
lower the cost of an iteration from 14.00 to
1.50 cycles (9.33x speedup).

Static analysis
TXT low level output example (1/2)

Emmanuel OSERET 19MAQAO Tool

**
Processing loop 0

**
Function: div
Source file: /tmp/test_newton_raphson.c
Source line: 67
Address in the binary: 10

**
Assembly code

**
MOVSS 0(%RSI,%RAX,4),%XMM0
DIVSS 0(%RDX,%RAX,4),%XMM0
MOVSS %XMM0,0(%RSI,%RAX,4)
ADD $0x1,%RAX
CMP %EAX,%EDI
JG 10

**
General loop properties

**
nb instructions : 6
nb uops : 6
loop length : 23
used xmm registers : 1
used ymm registers : 0

Pattern: SS
nb instructions:
SS 3

nb FP arithmetical operations:
div 1

Bytes loaded: 8
Bytes stored: 4
Arith. intensity (FLOP / ld+st bytes): 0.08

Unroll factor: 1 or NA

FIT IN UOP CACHE

**
Dispatch

**
P0 P1 P2 P3 P4 P5

Uops 1.33 1.33 1.50 1.50 1.00 1.33
Cycles 14.00 1.33 1.50 1.50 1.00 1.33

**
Vectorization ratios

**
All : 0%
Load : 0%
Store : 0%
Mul = NA (no mul SSE or AVX instructions)
add_sub = NA (no add_sub SSE or AVX
instructions)
Other : 0%

Static analysis
TXT low level output example (2/2)

Emmanuel OSERET 20MAQAO Tool

**
If all data in L1

**
cycles: 14.00
FP operations per cycle: 0.07 (GFLOPS at 1 GHz)
instructions per cycle: 0.43
bytes loaded per cycle: 0.57 (GB/s at 1 GHz)
bytes stored per cycle: 0.29 (GB/s at 1 GHz)
bytes loaded or stored per cycle: 0.86 (GB/s at
1 GHz)
Cycles if fully vectorized: 3.50
Cycles executing div or sqrt instructions: 10-14
(second value used for L1 performances)
**

End
**
Loop ending at source line 7 is not unrolled or
unrolled with no peel/tail code

Vtune – MAQAO analysis coupling
(on going experimentation)

21MAQAO Tool

� MAQAO: static analysis with the STAN module

� For instance, provides lower bound on cycles per
iteration and vectorization ratio

� VTune: dynamic analysis, using sampling and
thread profiling

� Correlating both analysis allows to:

� Dynamic/static cycles = potential speedup factor

� Refine understanding of memory bottlenecks

� For instance, cacheline usage

� Advise the user some optimizations
(vectorization...)

Emmanuel OSERET

Dynamic analysis

� Static analysis is optimistic

� Data in L1$

� Believe architecture

� Get a real image

� Coarse grain : find hotspots

� DECAN : compute / memory bound

� MIL : specialized instrumentation

Andrés S CHARIF-RUBIAL 22MAQAO Tool

MIL : Instrumentation Language

� Why ? Yet another language ?

� Need to handle coarse and fine grain issues

� Tool to express such queries

� DSL : Sufficiently rich for instrumentation purposes

� Fast prototyping

� Focus on what (research) and not how (technical)

� Explore code properties (side effect)

� What about OpenMP/MPI ?

Andrés S CHARIF-RUBIAL 23MAQAO Tool

MIL : Instrumentation Language

� Global variables

� Events

� Filters

� Actions

� Configuration features

� Output

� Language behavior (properties)

Andrés S CHARIF-RUBIAL 24MAQAO Tool

MIL : Instrumentation Language

� Probes

� External functions

� Name

� Library

� Parameters : int,string,macros,function

� Return value

� Demangling

� Context saving

� ASM inline : handles loops

� Runtime embedded code (lua code within MIL file)

Andrés S CHARIF-RUBIAL 25MAQAO Tool

_ZN3MPI4CommC2Ev
MPI::Comm::Comm()

MIL : Instrumentation Language

� Events

� Program : Entry/Exit (avoid LD + exit handlers)

� Functions : Entries/Exits

� Loops : Entries/Exits/Backedge

� Blocks : Entries/Exits

� Instructions : Before/After

� Callsites : Before/After

Andrés S CHARIF-RUBIAL 26MAQAO Tool

MIL : Instrumentation Language

� Events : Hierarchical evaluation

Andrés S CHARIF-RUBIAL 27MAQAO Tool

MIL : Instrumentation Language

� Filters

� Why ?

� Lists : whitelist / blacklist (int,string,regexp)

� Built-in : structural properties attributes (nesting
level for a loop)

� User defined : an actions that returns true/false

Andrés S CHARIF-RUBIAL 28MAQAO Tool

MIL : Instrumentation Language

� Actions

� Why ? For complex instrumentation queries

� Access to MAQAO Plugins API (existing modules)

� Scripting ability (Lua code)

� Function receives : event,patcher,gvars objects

� User filters may be used to express very complex
constraints (for instance based on static analysis)

Andrés S CHARIF-RUBIAL 29MAQAO Tool

MIL : Instrumentation Language

MADRASMADRAS

Disassembler

Instrumentation File
Binaries | Probes | Target Events | Filters |Actions

MAQAO

Plugins

API

Evaluate filters

ActionsProbes

MIL
Process file

MADRAS

Assembler And RewritterInstrumented Binary(ies)

Abstract LayerAbstract Layer

MAQAO

Framework

Hierarchical Events

Another way to use the MAQAO Framework :
DSL for Building performance evaluation tools

Andrés S CHARIF-RUBIAL 30MAQAO Tool

Conclusion

� Select a consistent methodology

� Assess code quality through static analysis

� Detect hotspots

� Iterative approach to solve finer grain issues

� If no relevant existing module : use MIL

Andrés S CHARIF-RUBIAL 31MAQAO Tool

Andrés S CHARIF-RUBIAL 32MAQAO Tool

Thanks for your attention !

Questions ?

Setup

� Copy maqao_exercices.tar.bz2 from /tmp

� Extract + cd exercises

� Run : ”source env.sh”

� 4 folders containing each one exercice

� memory

� gvars

� standalone_profiler

� stan

Andrés S CHARIF-RUBIAL 33MAQAO Tool

MIL module : Getting started

� To invoke MIL module :

� maqao module=mil input=MIL_FILE

� Run this command in each exercise folder and

� Given an exercise foldern replace MIL_FILE by
the file finishing with .mil suffix

� Ex :

� ”cd memory”

� ”maqao module=mil input=load_store_mrt.mil”

� ./mem_i
Andrés S CHARIF-RUBIAL 34MAQAO Tool

MIL module : file layout

� Helper code section (action,filters,...)

� Runtime code section (milRT class)

� Data section (reserved mil.data namespace)

� Declare section (external functions at Runtime)

� Global variables

� Global blacklist

� Events table

� Post instrumentation callback : at_instru_exit

Andrés S CHARIF-RUBIAL 35MAQAO Tool

Exercices : Outline

� Ex1 : looking for load/store operation

� Ex2 : using global variables

� Ex3 : a standalone simplified function profiler

� Ex4 : a specific loop profiler for STAN module

� Ex5 : using STAN module

Andrés S CHARIF-RUBIAL 36MAQAO Tool

Ex1 : looking for load/store operation

� In memory folder run :

� maqao module=mil input=load_store_mrt.mil

� ./mem_i

� This example shows how to instrument specific
instructions : load ans stores using MAQAO Lua
API

� This is done with user defined filters and
MAQAO Lua API to determine if the instruction
is a load or a store

� Prints selected instructions at runtime

Andrés S CHARIF-RUBIAL 37MAQAO Tool

Ex2 : using global variables
� In gvars folder run :

� maqao module=mil input=gvars.mil

� ./gvars_i

� In this exercise we will see how to insert calls to
external functions and use global variable

� This example shows how to initialize a
datatructure in an external function, keep the
returned pointer and use it in further external
calls.

� Source code of the patched binary and the
external library can be found in src folder

Andrés S CHARIF-RUBIAL 38MAQAO Tool

Ex3 : a standalone simplified function profiler

� In standalone_profiler folder run :

� maqao module=mil input=simple_function_profiler.mil

� export OMP_NUM_THREADS=2 && ./bt.S.milrt

� In this exercise we will build a simple function
profiler (aggregate time)

� In this example NPB-OMP bt.S (ICC compiled)
binary will be used.

� We will use embedded runtime code so that the
whole profiler is written in MIL.

� Prints results for each thread
Andrés S CHARIF-RUBIAL 39MAQAO Tool

Ex4 : specific loop profiler for the STAN module

� In stan folder run:

� make

� maqao module=mil input=mil_get_loop_cycles.lua

� maqao module=mil input=mil_get_loop_iters.lua

� ./my_div_baseline_inst_cycles 100000 2000

� ./my_div_baseline_inst_iters 100000 2000

� maqao print_estimated_cycles.lua uarch=NEHALEM
bin=my_div_baseline

� In this exercise we will:

� Instrument the my_div_baseline binary to get cycles and iterations number for
innermost loops of the my_div function

� Run the instrumented binaries

� Run a MAQAO script to display, for each loop, the average iteration number and
the estimated (using STAN) and measured number of cycles per iteration

Andrés S CHARIF-RUBIAL 40MAQAO Tool

� How can I use STAN to improve my code quality ?

� Compiling C = A / B (vector notation) with gcc -O2

� The instrumentation process previously presented
provides, for each innermost binary loop in the
hottest function (my_div):

� cycles per iteration (useful to compare with STAN)

� number of iterations (useful to identify peel/tail loops)

� To analyse my_div_baseline with STAN:
� maqao module= stan uarch =NEHALEM

bin= my_div_baseline fct =my_div lvl =2

Ex5 : using the STAN module

Emmanuel OSERET 41MAQAO Tool

� 1 binary loop, source loop not unrolled/vectorized:
� not unrolled or unrolled with no peel/tail

code (including vectorization)

� Your loop is not vectorized

� The binary loop is composed of 1 FP
arithmetical operations:

� - 1: divide

� STAN advises to compile with -O3:
� Your loop is processing FP elements but is

NOT OR PARTIALLY VECTORIZED...

� gcc: use O3 or Ofast

Ex5 : using the STAN module
baseline, -O2

Emmanuel OSERET 42MAQAO Tool

� 3 binary loops, source loop was vectorized:
� It is (...) unrolled by 4 (including
vectorization)

� Your loop is fully vectorized

� STAN detected a pathological case but gives no
solution/hint (you can read “Bottlenecks”):
� Detected EXPENSIVE INSTRUCTIONS...

� STAN advises to compile with special options to
issue faster instructions:
� gcc: (ffast-math or Ofast) and mrecip

Ex5 : using the STAN module
vectorized, -O3

Emmanuel OSERET 43MAQAO Tool

� 1 binary loop, source loop not unrolled/vectorized:
� It is (...) not unrolled or unrolled with

no peel/tail code

� Your loop is probably not vectorized

� The binary loop is composed of 5 FP
arithmetical operations:

� - 1: fast reciprocal

� STAN advises to compile with -O3:
� Your loop is processing FP elements but is

NOT OR PARTIALLY VECTORIZED...

� gcc: use O3 or Ofast

Ex5 : using the STAN module
recip, -ffast-math -mrecip

Emmanuel OSERET 44MAQAO Tool

� 1 binary loop, source loop was unrolled by 8:
� It is (...) not unrolled or unrolled with
no peel/tail code

� Your loop is not vectorized

� The binary loop is composed of 8 FP
arithmetical operations:

� - 8: divide

� STAN computed a lower bound of 112/8 = 14 cycles
per source loop iteration (no better than baseline):
� Assuming all data fit into the L1 cache,

each iteration of the binary loop takes
112.00 cycles

Ex5 : using the STAN module
unrolled, -O2 -funroll-loops

Emmanuel OSERET 45MAQAO Tool

� 1 binary loop, source loop was vectorized:
� It is (...) unrolled by 4 (including
vectorization)

� Your loop is fully vectorized

� The binary loop is composed of 8 FP
arithmetical operations:

� - 4: fast reciprocal

� STAN detected a pathological case but gives no
solution/hint (you can read “Bottlenecks”):
� Detected EXPENSIVE INSTRUCTIONS...

Ex5 : using the STAN module
all_opt, -O3 -ffast-math -mrecip

Emmanuel OSERET 46MAQAO Tool

� Baseline: ~14.0 cycles

� Optimized: ~2.3 cycles

� Speedup: ~6.1x

� Still possible to go faster using STAN:

� Loop unrolling on the all_opt version to relax P5
execution port

� Aligning arrays on 16B boundaries and inform the
compiler about that to replace (MOVLPS,
MOVHPS) “expensive” instructions pairs with
MOVAPS

Ex5 : using the STAN module
Optimization speedup

Emmanuel OSERET 47MAQAO Tool

