Performance analysis with Periscope

M. Gerndt, V. Petkov, Y. Oleynik, S. Benedict Technische Universität München petkovve@in.tum.de March 2010

Outline

- Motivation
- Periscope (PSC)
- Periscope performance analysis model
- Tool architecture
- Performance analysis automation
- Periscope GUI

ТШП

Motivation

- Current performance analysis procedure on POWER6:
 - Use *Tprof* to pinpoint time consuming subroutines
 - Use Xprofiler (GUI for gprof) to understand call graph
 - Use *hpmcount* (libhpm) to measure Hardware Counters

Process

xvmec2009

./a.out

.∕a.out

.∕a.out

./a.out

Total

vcl

- Use *mpitrace* to investigate mpi communication
- Problems:
 - Routine, time consuming
 - Error prone
 - Not scalable
 - Requires deep hardware knowledge
- Solution:
 - Performance analysis automation

Periscope

- Iterative online analysis
 - Measurements are configured, obtained and evaluated on the fly
 - no tracing!
- Distributed architecture
 - Analysis performed by multiple distributed hierarchical agents
- Automatic bottlenecks search
 - Based on performance optimization experts' knowledge
- Enhanced GUI
 - Eclipse based integrated development and performance analysis environment
- Source-to-source Instrumentation
 - Fortran, C/C++
 - limitations: multiple source folders, very picky about following standards

Iterative online analysis model

Distributed architecture

Graphical User Interface

Interactive frontend

Eclipse-based GUI

Analysis control

Agents network

Monitoring Request Interface

Application

Automatic search for bottlenecks

- Automation based on formalized expert knowledge:
 - Potential performance problems \rightarrow properties
 - Efficient search algorithm \rightarrow search strategies
- Performance property
 - Condition
 - Confidence
 - Severity

• Performance analysis strategies

- Itanium2 Stall Cycle Analysis
- IBM POWER6 Single Core Performance Analysis
- MPI Communication Pattern Analysis
- OpenMP

POWER6 Single Core Performance Properties

- Hot spot of the application
 - Memory access pattern
 - Cycles lost due to cache misses
 - Average amount of cycles lost per L1 miss
 - High L1 demand load miss rate
 - High L2 demand load miss rate
 - High L3 demand load miss rate
 - Cycles lost due to address translation misses
 - Cycles lost due to store instructions
 - Cycles lost due to Floating Point instructions inefficiencies
 - Cycles lost due to Integer multiplications and divisions
 - Cycles lost due to no instruction to dispatch

.

Itanium2 Stall Cycle properties

- IA64 Pipeline Stall Cycles
 - Stalls due to pipeline flush
 - Stalls due to branch misprediction flush
 - Stalls due to exception flush
 - Stalls due to floating point exceptions or L1D TLB misses
 - Stalls due to Flush to zero or SIR stalls
 - Stalls due to L1D TLB misses ...
 - Stalls due to waiting for data delivery to register
 - Stalls due to waiting for integer register
 - Stalls due to waiting for integer results
 - Stalls due to waiting for FP register
 - Stalls due to waiting for integer loads
 - L3 misses dominate data access
 - L2 misses
 - L3 misses

. . .

Stalls due to register stack engine

MPI Communication Patterns Analysis

- Automatic detection of wait patterns
- Measurement on the fly
- No tracing required!

MPI Performance Properties

- Excessive MPI time in receive due to late sender
- Excessive MPI time due to late root in broadcast
- Excessive MPI time in root due to late process in reduce
- Excessive MPI time in ... (1xN, Nx1, 1x1, NxN)
- Excessive MPI time due to many small messages
- Excessive MPI communication time

Graphical User Interface

RR

Technische Universität München

Clustering support

- Properties summarization
 - → Metaproperties
- Needed for peta-scale PA
- Identify *hidden* behavior

Cluster 1 CPUs: 7-10,16 Cluster 2 CPUs: 2-3,5,11,13-14 Cluster 3 CPUs:1,4,6,12,15

Thank you for your attention!

- Current version 1.2
 - Available under: http://www.lrr.in.tum.de/periscope
- Supported architectures
 - SGI Altix 4700 Itanium2
 - IBM Power575 POWER6
 - x86-based architectures
- Further information:
 - Periscope web page: http://www.lrr.in.tum.de/periscope

